902 resultados para Global navigation satellite systems (GLONASS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing precise positioning services in regional areas to support agriculture, mining, and construction sectors depends on the availability of ground continuously operating GNSS reference stations and communications linking these stations to central computers and users. With the support of CRC for Spatial Information, a more comprehensive review has been completed recently to examine various wired and wireless communication links available for precise positioning services, in particular in the Queensland regional areas. The study covers a wide range of communication technologies that are currently available, including fixed, mobile wireless, and Geo-stationary and or low earth orbiting satellites. These technologies are compared in terms of bandwidth, typical latency, reliability, coverage, and costs. Additionally, some tests were also conducted to determine the performances of different systems in the real environment. Finally, based on user application requirements, the paper discusses the suitability of different communication links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to present a preliminary benefit analysis for airborne GPS occultation technique for the Australian region. The simulation studies are based on current domestic commercial flights between major Australian airports. With the knowledge of GPS satellite ephemeris data, occultation events for for any particular flight can be determined. Preliminary analysis shows a high resolution occultation observations can be achieved with this approach, for instance, about 15 occultation events for a Perth-to-Sydney flight. The simulation result agrees to the results published by other researchers for a different region. Of course, occultation observation during off-peak hours might be affected due to the limited flight activities. --------- High resolution occultation observations obtainable from airborne GPS occultation system provides an opportunity to improve the current global numerical weather prediction (NWP) models and ultimately improves the accuracy in weather forecasting. More intensive research efforts and experimental demonstrations are required in order to demonstrate the technical feasibility of the airborne GPS technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tracking/remote monitoring systems using GNSS are a proven method to enhance the safety and security of personnel and vehicles carrying precious or hazardous cargo. While GNSS tracking appears to mitigate some of these threats, if not adequately secured, it can be a double-edged sword allowing adversaries to obtain sensitive shipment and vehicle position data to better coordinate their attacks, and to provide a false sense of security to monitoring centers. Tracking systems must be designed with the ability to perform route-compliance and thwart attacks ranging from low-level attacks such as the cutting of antenna cables to medium and high-level attacks involving radio jamming and signal / data-level simulation, especially where the goods transported have a potentially high value to terrorists. This paper discusses the use of GNSS in critical tracking applications, addressing the mitigation of GNSS security issues, augmentation systems and communication systems in order to provide highly robust and survivable tracking systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes a number of requirements for enhancing the trust of location acquisition from Satellite Navigation Systems, particularly for those applications where the location is monitored through a remote GNSS receiver. We discuss how the trust of a location acquisition could be propagated to an application through the use of a proposed tamper-­resistant GNSS receiver which quantifies the trust of a location solution from the signaling used (ie. P(Y) code, Galileo SOL, PRS, CS) and provides a cryptographic proof of this to a remote application. The tamper­-resistance state of the receiver is also included in this cryptographic proof.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The future vehicle navigation for safety applications requires seamless positioning at the accuracy of sub-meter or better. However, standalone Global Positioning System (GPS) or Differential GPS (DGPS) suffer from solution outages while being used in restricted areas such as high-rise urban areas and tunnels due to the blockages of satellite signals. Smoothed DGPS can provide sub-meter positioning accuracy, but not the seamless requirement. A disadvantage of the traditional navigation aids such as Dead Reckoning and Inertial Measurement Unit onboard vehicles are either not accurate enough due to error accumulation or too expensive to be acceptable by the mass market vehicle users. One of the alternative technologies is to use the wireless infrastructure installed in roadside to locate vehicles in regions where the Global Navigation Satellite Systems (GNSS) signals are not available (for example: inside tunnels, urban canyons and large indoor car parks). The examples of roadside infrastructure which can be potentially used for positioning purposes could include Wireless Local Area Network (WLAN)/Wireless Personal Area Network (WPAN) based positioning systems, Ultra-wide band (UWB) based positioning systems, Dedicated Short Range Communication (DSRC) devices, Locata’s positioning technology, and accurate road surface height information over selected road segments such as tunnels. This research reviews and compares the possible wireless technologies that could possibly be installed along roadside for positioning purposes. Models and algorithms of integrating different positioning technologies are also presented. Various simulation schemes are designed to examine the performance benefits of united GNSS and roadside infrastructure for vehicle positioning. The results from these experimental studies have shown a number of useful findings. It is clear that in the open road environment where sufficient satellite signals can be obtained, the roadside wireless measurements contribute very little to the improvement of positioning accuracy at the sub-meter level, especially in the dual constellation cases. In the restricted outdoor environments where only a few GPS satellites, such as those with 45 elevations, can be received, the roadside distance measurements can help improve both positioning accuracy and availability to the sub-meter level. When the vehicle is travelling in tunnels with known heights of tunnel surfaces and roadside distance measurements, the sub-meter horizontal positioning accuracy is also achievable. Overall, simulation results have demonstrated that roadside infrastructure indeed has the potential to provide sub-meter vehicle position solutions for certain road safety applications if the properly deployed roadside measurements are obtainable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of ambiguity resolution (AR) of Global Navigation Satellite Systems (GNSS), decorrelation among entries of an ambiguity vector, integer ambiguity search and ambiguity validations are three standard procedures for solving integer least-squares problems. This paper contributes to AR issues from three aspects. Firstly, the orthogonality defect is introduced as a new measure of the performance of ambiguity decorrelation methods, and compared with the decorrelation number and with the condition number which are currently used as the judging criterion to measure the correlation of ambiguity variance-covariance matrix. Numerically, the orthogonality defect demonstrates slightly better performance as a measure of the correlation between decorrelation impact and computational efficiency than the condition number measure. Secondly, the paper examines the relationship of the decorrelation number, the condition number, the orthogonality defect and the size of the ambiguity search space with the ambiguity search candidates and search nodes. The size of the ambiguity search space can be properly estimated if the ambiguity matrix is decorrelated well, which is shown to be a significant parameter in the ambiguity search progress. Thirdly, a new ambiguity resolution scheme is proposed to improve ambiguity search efficiency through the control of the size of the ambiguity search space. The new AR scheme combines the LAMBDA search and validation procedures together, which results in a much smaller size of the search space and higher computational efficiency while retaining the same AR validation outcomes. In fact, the new scheme can deal with the case there are only one candidate, while the existing search methods require at least two candidates. If there are more than one candidate, the new scheme turns to the usual ratio-test procedure. Experimental results indicate that this combined method can indeed improve ambiguity search efficiency for both the single constellation and dual constellations respectively, showing the potential for processing high dimension integer parameters in multi-GNSS environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many large-scale GNSS CORS networks have been deployed around the world to support various commercial and scientific applications. To make use of these networks for real-time kinematic positioning services, one of the major challenges is the ambiguity resolution (AR) over long inter-station baselines in the presence of considerable atmosphere biases. Usually, the widelane ambiguities are fixed first, followed by the procedure of determination of the narrowlane ambiguity integers based on the ionosphere-free model in which the widelane integers are introduced as known quantities. This paper seeks to improve the AR performance over long baseline through efficient procedures for improved float solutions and ambiguity fixing. The contribution is threefold: (1) instead of using the ionosphere-free measurements, the absolute and/or relative ionospheric constraints are introduced in the ionosphere-constrained model to enhance the model strength, thus resulting in the better float solutions; (2) the realistic widelane ambiguity precision is estimated by capturing the multipath effects due to the observation complexity, leading to improvement of reliability of widelane AR; (3) for the narrowlane AR, the partial AR for a subset of ambiguities selected according to the successively increased elevation is applied. For fixing the scalar ambiguity, an error probability controllable rounding method is proposed. The established ionosphere-constrained model can be efficiently solved based on the sequential Kalman filter. It can be either reduced to some special models simply by adjusting the variances of ionospheric constraints, or extended with more parameters and constraints. The presented methodology is tested over seven baselines of around 100 km from USA CORS network. The results show that the new widelane AR scheme can obtain the 99.4 % successful fixing rate with 0.6 % failure rate; while the new rounding method of narrowlane AR can obtain the fix rate of 89 % with failure rate of 0.8 %. In summary, the AR reliability can be efficiently improved with rigorous controllable probability of incorrectly fixed ambiguities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an integrated inter-vehicles wireless communications and positioning system supporting alternate positioning techniques is proposed to meet the requirements of safety applications of Cooperative Intelligent Transportation Systems (C-ITS). Recent advances have repeatedly demonstrated that road safety problems can be to a large extent addressed via a range of technologies including wireless communications and positioning in vehicular environments. The novel communication stack utilizing a dedicated frequency spectrum (e.g. at 5.9 GHz band), known as Dedicated Short-Range Communications (DSRC), has been particularly designed for Wireless Access in Vehicular Environments (WAVE) to support safety applications in highly dynamic environments. Global Navigation Satellite Systems (GNSS) is another essential enabler to support safety on rail and roads. Although current vehicle navigation systems such as single frequency Global Positioning System (GPS) receivers can provide route guidance with 5-10 meters (road-level) position accuracy, positioning systems utilized in C-ITS must provide position solutions with lane-level and even in-lane-level accuracies based on the requirements of safety applications. This article reviews the issues and technical approaches that are involved in designing a vehicular safety communications and positioning architecture; it also provides technological solutions to further improve vehicular safety by integrating the DSRC and GNSS-based positioning technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigates how to obtain accurate and reliable positioning results with global navigation satellite systems (GNSS). The work provides a theoretical framework for reliability control in GNSS carrier phase ambiguity resolution, which is the key technique for precise GNSS positioning in centimetre levels. The proposed approach includes identification and exclusion procedures of unreliable solutions and hypothesis tests, allowing the reliability of solutions to be controlled in the aspects of mathematical models, integer estimation and ambiguity acceptance tests. Extensive experimental results with both simulation and observed data sets effectively demonstrate the reliability performance characteristics based on the proposed theoretical framework and procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of postdetection integration (PDI) techniques for the detection of Global Navigation Satellite Systems (GNSS) signals in the presence of uncertainties in frequency offsets, noise variance, and unknown data-bits is studied. It is shown that the conventional PDI techniques are generally not robust to uncertainty in the data-bits and/or the noise variance. Two new modified PDI techniques are proposed, and they are shown to be robust to these uncertainties. The receiver operating characteristics (ROC) and sample complexity performance of the PDI techniques in the presence of model uncertainties are analytically derived. It is shown that the proposed methods significantly outperform existing methods, and hence they could become increasingly important as the GNSS receivers attempt to push the envelope on the minimum signal-to-noise ratio (SNR) for reliable detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design and implementation of a dual–tracking Radio Frequency (RF) front–end for a multi–constellation Global Navigation Satellite Systems (GNSS) receiver. The RF frond–end is based on the direct RF conversion architecture, which employs sub–Nyquist sampling (also known as subsampling) at RF. The dual–tracking RF front–end is composed of a few RF components that are duplicated to form the two RF channels. Employing a dual–channel Analogue–to–Digital Converter (ADC) enables synchronisation of the RF channels and minimises the errors resulting from the differences in the satellite clocks and the propagation delay between the two RF channels. The digitised GNSS signals are processed by two separate acquisition and tracking engines that are driven by the front–end’s master clock. This setup provides two synchronised receivers that are integrated onto one piece of hardware. The hardware is intended to be used for research applications such as multipath mitigation, scintillation assessment, and advanced satellite clock and spatial frame transformation modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Arbeit behandelt Controlled Traffic Farming (CTF) Anbausysteme, bei denen für alle Arbeitsgänge satellitengesteuert immer dieselben Fahrspuren benutzt werden. Lässt sich mit CTF die Belastung des Bodens verringern und die Effizienz von Direktsaat-Anbausystemen steigern? Neben agronomischen und bodenphysikalischen Parametern wurden Auswirkungen von Lenksystemen und Umsetzungsmöglichkeiten von CTF in die Praxis untersucht. Die Analyse einer CTF-Umsetzung unter europäischen Bedingungen mit der Verwendung von Standardmaschinen zeigte, dass sich CTF-Anbausysteme mit den heute zur Verfügung stehenden Maschinen für Dauergrünland, Mähdruschfrüchte und Mais auf kleiner und grösser strukturierten Flächen relativ einfach mechanisieren lassen. Bei Zuckerrüben und Kartoffeln können Kompromisse notwendig sein. Generell erfordern CTF-Anbausysteme eine sorgfältige Planung und Umsetzung in die Praxis. Im dreijährigen Feldversuch (Winterweizen, Wintergerste, Kunstwiese mit Kleegrasmischung) auf einem Lehmboden wurde CTF-Direktsaat mit konventionell zufällig befahrenen Direktsaat- und Pflugverfahren verglichen. Unter CTF zeigte sich eine Differenzierung der nicht, gering und intensiv befahrenen Varianten. Auf dem vorliegenden kompakten Boden mit 1150 mm Jahresniederschlag waren die Unterschiede zwischen den nicht befahrenen Flächen und den mit niedrigem Kontaktflächendruck befahrenen Flächen eher gering. In den nicht befahrenen Flächen entwickelten Eindringwiderstand und Kohlendioxidgehalt der Bodenluft nach drei Jahren signifikant bessere Werte. Bodendichte und Porosität zeigten hingegen keinen eindeutig interpretierbaren Trend. Aufgrund teils suboptimaler Feldaufgänge liess sich keine generelle agronomische Tendenz ableiten. Die intensive Befahrung der Pflegefahrgassen zeigte allerdings klar negative bodenkundliche und planzenbauliche Auswirkungen. Es bietet sich daher an, vor allem für Pflegearbeiten permanent dieselben Fahrspuren zu nutzen. In der Untersuchung zu den Auswirkungen von Lenksystemen zeigten sich signifikante Vorteile von Lenksystemen in einer Verminderung der Fahrerbelastung und einer höheren Lenkgenauigkeit vor allem bei grossen Arbeitsbreiten ohne Spuranreisser. Die meisten anderen Messparameter waren mit Lenksystem leicht vorteilhafter als ohne, unterschieden sich aber nicht signifikant voneinander. Fahrer und naturräumliche Gegebenheiten wie die Schlagform hatten einen wesentlich grösseren Einfluss. Gesamthaft betrachtet erweitert CTF in Kombination mit weiteren Bodenschutzmass-nahmen die Möglichkeiten, Bodenverdichtungen zu vermeiden, den Bedarf an energieintensiver Bodenlocke-rung zu reduzieren und die Entwicklung einer stabileren Bodenstruktur mit höherer Tragfähigkeit zu fördern. Zusammen mit einer an Kultur und Anbausystem angepassten Saatbettbereitung und den in geraden Reihen einfacher durchführbaren mechanischen Pflegemassnahmen ergeben sich gute Voraussetzungen für die Gestaltung agronomisch leistungsfähiger und ökologisch nachhaltiger Anbausysteme.