949 resultados para Giant mine
Resumo:
Intercalated Archean komatiites and dacites sit above a thick footwall dacite unit in the host rock succession at the Black Swan Nickel Mine, north of Kalgoorlie in the Yilgarn Craton, Western Australia. Both lithofacies occur in units that vary in scale from laterally extensive at the scale of the mine lease to localized, thin, irregular bodies, from > 100 m thick to only centimetres thick. Some dacites are only slightly altered and deformed, and are interpreted to post-date major deformation and alteration (late porphyries). However, the majority of the dacites display evidence of deformation, especially at contacts, and metamorphism, varying from silicification and chlorite alteration at contacts to pervasive low grade regional metamorphic alteration represented by common assemblages of chlorite, sericite and albite. Texturally, the dacites vary from entirely massive and coherent to partially brecciated to totally brecciated. Strangely, some dacites are coherent at the margins and brecciated internally. Breccia textures vary from cryptically defined, to blocky, closely packed, in situ jig-saw fit textures with secondary minerals in fractures between clasts, to more apparent matrix rich textures with round clast forms, giving apparent conglomerate textures. Some clast zones have multi-coloured clasts, giving the impression of varied provenance. Strangely however, all these textural variants have gradational relationships with each other, and no bedding or depositional structures are present. This indicates that all textures have an in situ origin. The komatiites are generally altered and pervasively carbonate veined. Preservation of original textures is patchy and local, but includes coarse adcumulate, mesocumulate, orthocumulate, crescumulate-harrisite and occasionally spinifex textures. Where original contacts between komatiites and dacites are preserved intact (i.e. not sheared or overprinted by alteration), the komatiites have chilled margins, whereas the dacites do not. The margins of the dacites are commonly silicified, and inclusions of dacite occur in komatiite, even at the top contacts of komatiite units, but komatiite clasts do not occur in the dacites. The komatiites therefore were emplaced as sills into the dacites, and the intercalated relationships are interpreted as intrusive. The brecciation and alteration in the dacites are interpreted as being largely due to hydraulic fracturing and alteration induced by contact metamorphic effects and hydrothermal alteration deriving from the intrusion of komatiites into the felsic pile. The absence of autobreccia and hyaloclastite textures in the dacites suggest that they were emplaced as an earlier intrusive (sill?) complex at a high level in the crust.
Resumo:
Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.
Resumo:
This study used next generation sequencing technologies to investigate growth in a cultured crustacean. The objective was to identify and characterise specific gene loci that contribute important phenotypic variation to growth as well as to develop a large set of SNP markers in candidate genes for assessing correlations between specific mutations and individual growth performance. The genomic dataset generated provides a fundamental resource for application in future crustacean stock improvement programs. Ultimately, the data can be applied to development of culture lines with improved growth performance.
Resumo:
The giant freshwater prawn (Macrobrachium rosenbergii) or GFP is one of the most important freshwater crustacean species in the inland aquaculture sector of many tropical and subtropical countries. Since the 1990’s, there has been rapid global expansion of freshwater prawn farming, especially in Asian countries, with an average annual rate of increase of 48% between 1999 and 2001 (New, 2005). In Vietnam, GFP is cultured in a variety of culture systems, typically in integrated or rotational rice-prawn culture (Phuong et al., 2006) and has become one of the most common farmed aquatic species in the country, due to its ability to grow rapidly and to attract high market price and high demand. Despite potential for expanded production, sustainability of freshwater prawn farming in the region is currently threatened by low production efficiency and vulnerability of farmed stocks to disease. Commercial large scale and small scale GFP farms in Vietnam have experienced relatively low stock productivity, large size and weight variation, a low proportion of edible meat (large head to body ratio), scarcity of good quality seed stock. The current situation highlights the need for a systematic stock improvement program for GFP in Vietnam aimed at improving economically important traits in this species. This study reports on the breeding program for fast growth employing combined (between and within) family selection in giant freshwater prawn in Vietnam. The base population was synthesized using a complete diallel cross including 9 crosses from two local stocks (DN and MK strains) and a third exotic stock (Malaysian strain - MY). In the next three selection generations, matings were conducted between genetically unrelated brood stock to produce full-sib and (paternal) half-sib families. All families were produced and reared separately until juveniles in each family were tagged as a batch using visible implant elastomer (VIE) at a body size of approximately 2 g. After tags were verified, 60 to 120 juveniles chosen randomly from each family were released into two common earthen ponds of 3,500 m2 pond for a grow-out period of 16 to 18 weeks. Selection applied at harvest on body weight was a combined (between and within) family selection approach. 81, 89, 96 and 114 families were produced for the Selection line in the F0, F1, F2 and F3 generations, respectively. In addition to the Selection line, 17 to 42 families were produced for the Control group in each generation. Results reported here are based on a data set consisting of 18,387 body and 1,730 carcass records, as well as full pedigree information collected over four generations. Variance and covariance components were estimated by restricted maximum likelihood fitting a multi-trait animal model. Experiments assessed performance of VIE tags in juvenile GFP of different size classes and individuals tagged with different numbers of tags showed that juvenile GFP at 2 g were of suitable size for VIE tags with no negative effects evident on growth or survival. Tag retention rates were above 97.8% and tag readability rates were 100% with a correct assignment rate of 95% through to mature animal size of up to 170 g. Across generations, estimates of heritability for body traits (body weight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) and carcass weight traits (abdominal weight, skeleton-off weight and telson-off weight) were moderate and ranged from 0.14 to 0.19 and 0.17 to 0.21, respectively. Body trait heritabilities estimated for females were significantly higher than for males whereas carcass weight trait heritabilities estimated for females and males were not significantly different (P > 0.05). Maternal and common environmental effects for body traits accounted for 4 to 5% of the total variance and were greater in females (7 to 10%) than in males (4 to 5%). Genetic correlations among body traits were generally high in both sexes. Genetic correlations between body and carcass weight traits were also high in the mixed sexes. Average selection response (% per generation) for body weight (transformed to square root) estimated as the difference between the Selection and the Control group was 7.4% calculated from least squares means (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favourable correlated selection responses (estimated from LSMs) were detected for other body traits (12.1%, 14.5%, 10.4%, 15.5% and 13.3% for body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width, respectively) over three selection generations. Data in the second selection generation showed positive correlated responses for carcass weight traits (8.8%, 8.6% and 8.8% for abdominal weight, skeleton-off weight and telson-off weight, respectively). Data in the third selection generation showed that heritability for body traits were moderate and ranged from 0.06 to 0.11 and 0.11 to 0.22 at weeks 10 and 18, respectively. Body trait heritabilities estimated at week 10 were not significantly lower than at week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Overall our results suggest that growth rate responds well to the application of family selection and carcass weight traits can also be improved in parallel, using this approach. Moreover, selection for high growth rate in GFP can be undertaken successfully before full market size has been reached. The outcome of this study was production of an improved culture strain of GFP for the Vietnamese culture industry that will be trialed in real farm production environments to confirm the genetic gains identified in the experimental stock improvement program.
Resumo:
Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.
Resumo:
Freshwater prawn (Macrobrachium rosenbergii) culture in the Western Hemisphere is primarily, if not entirely, derived from 36 individual prawns originally introduced to Hawaii from Malaysia in 1965 and 1966. Little information is available regarding genetic variation within and among cultured prawn stocks worldwide. The goal of the current study was to characterize genetic diversity in various prawn populations with emphasis on those cultured in North America. Five microsatellite loci were screened to estimate genetic diversity in two wild (Myanmar and India-wild) and seven cultured (Hawaii-1, Hawaii-2, India-cultured, Israel, Kentucky, Mississippi and Texas) populations. Average allelic richness ranged from 3.96 (Israel) to 20.45 (Myanmar). Average expected heterozygosity ranged from 0.580 (Israel) to 0.935 (Myanmar). Many of the cultured populations exhibited reduced genetic diversity when compared with the Myanmar and the India-cultured populations. Significant deficiency in heterozygotes was detected in the India-cultured, Mississippi and Kentucky populations (overall Fis estimated of 0.053, 0.067 and 0.108 respectively) reflecting moderate levels of inbreeding. Overall estimate of fixation index (Fst = 0.1569) revealed moderately high levels of differentiation among the populations. Outcome of this study provide a baseline assessment of genetic diversity in some available strains that will be useful for the development of breeding programmes.
Resumo:
We estimated the heritability and correlations between body and carcass weight traits in a cultured stock of giant freshwater prawn (GFP) (Macrobrachium rosenbergii) selected for harvest body weight in Vietnam. The data set consisted of 18,387 body and 1,730 carcass records, as well as full pedigree information collected over four generations. Variance and covariance components were estimated by restricted maximum likelihood fitting a multi-trait animal model. Across generations, estimates of heritability for body and carcass weight traits were moderate and ranged from 0.14 to 0.19 and 0.17 to 0.21, respectively. Body trait heritabilities estimated for females were significantly higher than for males whereas carcass weight trait heritabilities estimated for females and males were not significantly different (P>. 0.05). Maternal effects for body traits accounted for 4 to 5% of the total variance and were greater in females than in males. Genetic correlations among body traits were generally high in the mixed sexes. Genetic correlations between body and carcass weight traits were also high. Although some issues remain regarding the best statistical model to be fitted to GFP data, our results suggest that selection for high harvest body weight based on breeding values estimated by fitting an animal model to the data can significantly improve mean body and carcass weight in GFP.
Resumo:
We estimated genetic changes in body and carcass weight traits in a giant freshwater prawn (GFP) (Macrobrachium rosenbergii) population selected for increased body weight at harvest in Vietnam. The data set consisted of 18,387 individual body and 1730 carcass weight records, as well as full pedigree information collected over four generations. Average selection response (per generation) in body weight at harvest (transformed to square root) estimated as the difference between the Selection line and the Control group was 7.4% calculated from least squares mean (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favorable correlated selection responses (estimated from LSMs) were found for other body traits including: total length, cephalothorax length, abdominal length, cephalothorax width, and abdominal width (12.1%, 14.5%, 10.4%, 15.5% and 13.3% over three selection generations, respectively). Data in the second generation of selection showed positive correlated responses for carcass weight traits including: abdominal weight, exoskeleton-off weight, and telson-off weight of 8.8%, 8.6% and 8.8%, respectively. We conclude that body weight at harvest responded well to the application of combined (between and within) family selection and correlated responses in carcass weight traits were favorable.
Resumo:
Gaudefroyite Ca4Mn3+3-x(BO3)3(CO3)(O,OH)3 is an unusual mineral containing both borate and carbonate groups and is found in the oxidation zones of manganese minerals, and it is black in color. Vibrational spectroscopy has been used to explore the molecular structure of gaudefroyite. Gaudefroyite crystals are short dipyramidal or prismatic with prominent pyramidal terminations, to 5 cm. Two very sharp Raman bands at 927 and 1076 cm-1are assigned to trigonal borate and carbonate respectively. Broad Raman bands at 1194, 1219 and 1281 cm-1 are attributed to BOH in-plane bending modes. Raman bands at 649 and 670 cm-1 are assigned to the bending modes of trigonal and tetrahedral boron. Infrared spectroscopy supports these band assignments. Raman bands in the OH stretching region are of a low intensity. The combination of Raman and infrared spectroscopy enables the assessment of the molecular structure of gaudefroyite to be made.
Resumo:
An area of property valuation that has attracted less attention than other property markets over the past 20 years has been the mining and extractive industries. These operations can range from small operators on leased or private land to multinational companies. Although there are a number of national mining standards that indicate the type of valuation methods that can be adopted for this asset class, these standards do not specify how or when these methods are best suited to particular mine operations. The RICS guidance notes and the draft IVSC guidance notes also advise the various valuations methods that can be used to value mining properties; but, again they do not specify what methods should be applied where and when. One of the methods supported by these standards and guidelines is the market approach. This paper will carry out an analysis of all mine, extractive industry and waste disposal sites sale transactions in Queensland Australia, a major world mining centre, to determine if a market valuation approach such as direct comparison is actually suitable for the valuation of a mine or extractive industry. The analysis will cover the period 1984 to 2011 and covers sale transactions for minerals, petroleum and gas, waste disposal sites, clay, sand and stone. Based on this analysis, the suitability of direct comparison for valuation purposes in this property sector will be tested.
Resumo:
Objective Dehydration and symptoms of heat illness are common among the surface mining workforce. This investigation aimed to determine whether heat strain and hydration status exceeded recommended limits. Methods Fifteen blast crew personnel operating in the tropics were monitored across a 12-hour shift. Heart rate, core body temperature, and urine-specific gravity were continuously recorded. Participants self-reported fluid consumption and completed a heat illness symptom inventory. Results Core body temperature averaged 37.46 +/- 0.13[degrees]C, with the group maximum 37.98 +/- 0.19[degrees]C. Mean urine-specific gravity was 1.024 +/- 0.007, with 78.6% of samples 1.020 or more. Seventy-three percent of workers reported at least one symptom of heat illness during the shift. Conclusions Core body temperature remained within the recommended limits; however, more than 80% of workers were dehydrated before commencing the shift, and tended to remain so for the duration.
Resumo:
Natural distributions of most freshwater taxa are restricted geographically, a pattern that reflects dispersal limitation. Macrobrachium rosenbergii is unusual because it occurs naturally in rivers from near Pakistan in the west, across India and Bangladesh to the Malay Peninsula, and across the Sunda Shelf and Indonesian archipelago to western Java. Individuals cannot tolerate full marine conditions, so dispersal between river drainage basins must occur at limited geographical scales when ecological or climatic factors are favorable. We examined molecular diversity in wild populations of M. rosenbergii across its complete natural range to document patterns of diversity and to relate them to factors that have driven evolution of diversity in this species. We found 3 clades in the mitochondrial deoxyribonucleic acid (mtDNA) data set that corresponded geographically with eastern, central, and western sets of haplotypes that last shared a common ancestor 1 × 106 y ago. The eastern clade was closest to the common ancestor of all 3 clades and to the common ancestor with its congener, Macrobrachium spinipes, distributed east of Huxley's Line. Macrobrachium rosenbergii could have evolved in the western Indonesian archipelago and spread westward during the early to mid-Pleistocene to India and Sri Lanka. Additional groups identified in the nuclear DNA data set in the central and western clades probably indicate secondary contact via dispersal between regions and modern introductions that have mixed nuclear and mtDNA genes. Pleistocene sea-level fluctuations can explain dispersal across the Indonesian archipelago and parts of mainland southeastern Asia via changing river drainage connections in shallow seas on wide continental shelves. At the western end of the modern distribution where continental shelves are smaller, intermittent freshwater plumes from large rivers probably permitted larval dispersal across inshore areas of lowered salinity.
Resumo:
The aim of the current study was to estimate heritabilities and correlations for body traits at different ages (Weeks 10 and 18 after stocking) in a giant freshwater prawn (Macrobrachium rosenbergii) population selected for fast growth rate in Vietnam. The dataset consisted of 4650 body records (2432 and 2218 records collected at Weeks 10 and 18, respectively) in the full pedigree comprising a total of 18 387 records. Variance and covariance components were estimated using restricted maximum likelihood fitting a multi-trait animal model. Estimates of heritability for body traits (bodyweight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) were moderate and ranged from 0.06 to 0.11 and from 0.11 to 0.22 at Weeks 10 and 18, respectively. Body-trait heritabilities estimated at Week 10 were not significantly lower than at Week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Our results suggested that selection for high growth rate in GFP can be undertaken successfully before full market size has been reached.
Resumo:
We propose a new protocol providing cryptographically secure authentication to unaided humans against passive adversaries. We also propose a new generic passive attack on human identification protocols. The attack is an application of Coppersmith’s baby-step giant-step algorithm on human identification protcols. Under this attack, the achievable security of some of the best candidates for human identification protocols in the literature is further reduced. We show that our protocol preserves similar usability while achieves better security than these protocols. A comprehensive security analysis is provided which suggests parameters guaranteeing desired levels of security.