784 resultados para Gesture recognition


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hand gesture recognition based on surface electromyography (sEMG) signals is a promising approach for the development of intuitive human-machine interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG signal arises from the muscles' electrical activity, and can thus be used to recognize hand gestures. The decoding from sEMG signals to actual control signals is non-trivial; typically, control systems map sEMG patterns into a set of gestures using machine learning, failing to incorporate any physiological insight. This master thesis aims at developing a bio-inspired hand gesture recognition system based on neuromuscular spike extraction rather than on simple pattern recognition. The system relies on a decomposition algorithm based on independent component analysis (ICA) that decomposes the sEMG signal into its constituent motor unit spike trains, which are then forwarded to a machine learning classifier. Since ICA does not guarantee a consistent motor unit ordering across different sessions, 3 approaches are proposed: 2 ordering criteria based on firing rate and negative entropy, and a re-calibration approach that allows the decomposition model to retain information about previous sessions. Using a multilayer perceptron (MLP), the latter approach results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom scenario. Afterwards, the decomposition and classification pipeline for inference is parallelized and profiled on the PULP platform, achieving a latency < 50 ms and an energy consumption < 1 mJ. Both the classification models tested (a support vector machine and a lightweight MLP) yielded an accuracy > 92% in a 1-subject, 5-classes (4 gestures and rest) scenario. These results prove that the proposed system is suitable for real-time execution on embedded platforms and also capable of matching the accuracy of state-of-the-art approaches, while also giving some physiological insight on the neuromuscular spikes underlying the sEMG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A interação humano-computador passou a desempenhar um papel fundamental no mundo atual. Esta forma de comunicar continua a evoluir, introduzindo novas formas de interação, como por exemplo, a interação natural. Este estilo de interação começou por estar presente na área de jogos. No entanto, atualmente está a ser explorada noutras áreas. Esta dissertação tem como propósito investigar a utilidade das interfaces naturais encontradas em consolas de jogos e conjugar com a área educativa, nomeadamente, o ensino e a aprendizagem dos fundamentos de Matemática. O desenvolvimento deste projeto baseou-se no estudo dos conteúdos programáticos de Matemática referentes ao 1º ciclo do ensino básico, de várias aplicações já existentes que estão relacionadas com o tema abordado e de alguns dispositivos de interação natural. De forma a avaliar a ideia proposta, foi desenvolvido um protótipo, designado Matemática Interativa, no sentido de permitir ao utilizador enriquecer a aprendizagem e também o interesse pela disciplina. São descritas, de uma forma mais aprofundada, as funcionalidades do dispositivo escolhido, o Kinect, de modo a tirar proveito das suas potencialidades e desenvolver um motor de reconhecimento de gestos e respetiva avaliação. Por fim, é feita uma discussão dos resultados de uma avaliação de usabilidade com o objetivo de validar a aplicação Matemática Interativa. Os resultados desta avaliação sugerem que a aplicação foi bem-sucedida e revelam ainda capacidades de melhoria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Public Display Systems (PDS) increasingly have a greater presence in our cities. These systems provide information and advertising specifically tailored to audiences in spaces such as airports, train stations, and shopping centers. A large number of public displays are also being deployed for entertainment reasons. Sometimes designing and prototyping PDS come to be a laborious, complex and a costly task. This dissertation focuses on the design and evaluation of PDS at early development phases with the aim of facilitating low-effort, rapid design and the evaluation of interactive PDS. This study focuses on the IPED Toolkit. This tool proposes the design, prototype, and evaluation of public display systems, replicating real-world scenes in the lab. This research aims at identifying benefits and drawbacks on the use of different means to place overlays/virtual displays above a panoramic video footage, recorded at real-world locations. The means of interaction studied in this work are on the one hand the keyboard and mouse, and on the other hand the tablet with two different techniques of use. To carry out this study, an android application has been developed whose function is to allow users to interact with the IPED Toolkit using the tablet. Additionally, the toolkit has been modified and adapted to tablets by using different web technologies. Finally the users study makes a comparison about the different means of interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El reconeixement dels gestos de la mà (HGR, Hand Gesture Recognition) és actualment un camp important de recerca degut a la varietat de situacions en les quals és necessari comunicar-se mitjançant signes, com pot ser la comunicació entre persones que utilitzen la llengua de signes i les que no. En aquest projecte es presenta un mètode de reconeixement de gestos de la mà a temps real utilitzant el sensor Kinect per Microsoft Xbox, implementat en un entorn Linux (Ubuntu) amb llenguatge de programació Python i utilitzant la llibreria de visió artifical OpenCV per a processar les dades sobre un ordinador portàtil convencional. Gràcies a la capacitat del sensor Kinect de capturar dades de profunditat d’una escena es poden determinar les posicions i trajectòries dels objectes en 3 dimensions, el que implica poder realitzar una anàlisi complerta a temps real d’una imatge o d’una seqüencia d’imatges. El procediment de reconeixement que es planteja es basa en la segmentació de la imatge per poder treballar únicament amb la mà, en la detecció dels contorns, per després obtenir l’envolupant convexa i els defectes convexos, que finalment han de servir per determinar el nombre de dits i concloure en la interpretació del gest; el resultat final és la transcripció del seu significat en una finestra que serveix d’interfície amb l’interlocutor. L’aplicació permet reconèixer els números del 0 al 5, ja que s’analitza únicament una mà, alguns gestos populars i algunes de les lletres de l’alfabet dactilològic de la llengua de signes catalana. El projecte és doncs, la porta d’entrada al camp del reconeixement de gestos i la base d’un futur sistema de reconeixement de la llengua de signes capaç de transcriure tant els signes dinàmics com l’alfabet dactilològic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El reconeixement dels gestos de la mà (HGR, Hand Gesture Recognition) és actualment un camp important de recerca degut a la varietat de situacions en les quals és necessari comunicar-se mitjançant signes, com pot ser la comunicació entre persones que utilitzen la llengua de signes i les que no. En aquest projecte es presenta un mètode de reconeixement de gestos de la mà a temps real utilitzant el sensor Kinect per Microsoft Xbox, implementat en un entorn Linux (Ubuntu) amb llenguatge de programació Python i utilitzant la llibreria de visió artifical OpenCV per a processar les dades sobre un ordinador portàtil convencional. Gràcies a la capacitat del sensor Kinect de capturar dades de profunditat d’una escena es poden determinar les posicions i trajectòries dels objectes en 3 dimensions, el que implica poder realitzar una anàlisi complerta a temps real d’una imatge o d’una seqüencia d’imatges. El procediment de reconeixement que es planteja es basa en la segmentació de la imatge per poder treballar únicament amb la mà, en la detecció dels contorns, per després obtenir l’envolupant convexa i els defectes convexos, que finalment han de servir per determinar el nombre de dits i concloure en la interpretació del gest; el resultat final és la transcripció del seu significat en una finestra que serveix d’interfície amb l’interlocutor. L’aplicació permet reconèixer els números del 0 al 5, ja que s’analitza únicament una mà, alguns gestos populars i algunes de les lletres de l’alfabet dactilològic de la llengua de signes catalana. El projecte és doncs, la porta d’entrada al camp del reconeixement de gestos i la base d’un futur sistema de reconeixement de la llengua de signes capaç de transcriure tant els signes dinàmics com l’alfabet dactilològic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work done in this master's thesis, presents a new system for the recognition of human actions from a video sequence. The system uses, as input, a video sequence taken by a static camera. A binary segmentation method of the the video sequence is first achieved, by a learning algorithm, in order to detect and extract the different people from the background. To recognize an action, the system then exploits a set of prototypes generated from an MDS-based dimensionality reduction technique, from two different points of view in the video sequence. This dimensionality reduction technique, according to two different viewpoints, allows us to model each human action of the training base with a set of prototypes (supposed to be similar for each class) represented in a low dimensional non-linear space. The prototypes, extracted according to the two viewpoints, are fed to a $K$-NN classifier which allows us to identify the human action that takes place in the video sequence. The experiments of our model conducted on the Weizmann dataset of human actions provide interesting results compared to the other state-of-the art (and often more complicated) methods. These experiments show first the sensitivity of our model for each viewpoint and its effectiveness to recognize the different actions, with a variable but satisfactory recognition rate and also the results obtained by the fusion of these two points of view, which allows us to achieve a high performance recognition rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação apresenta a implementação de navegação no ambiente virtual, reconhecimento de gestos e controle de interface, feitos através do dispositivo Kinect, no Sistema ITV: um sistema de treinamento de operadores e mantenedores de usinas hidrelétricas e subestações elétricas. São mostrados, também, determinados aperfeiçoamentos recentes, como conversão em vídeo, telas de alarmes sonoros e visuais, ambientação sonora em três dimensões e narração do processo. Além da apresentação do Sistema ITV, são expostos o dispositivo Kinect e o algoritmo utilizado na comparação dos padrões de movimento, o DTW. Em seguida, são abordados em detalhes o projeto e a implementação da navegação, do reconhecimento de gestos e do controle de interface. Como estudo de caso, é exibida uma Instrução Técnica Virtual (ITV), elaborada especialmente para testar e avaliar a nova interface proposta. Posteriormente, são apresentados os resultados, considerados satisfatórios, obtidos através da análise de questionários qualitativos aplicados a estudantes da Universidade Federal do Pará. Por fim, são realizadas as considerações referentes a este trabalho e expostas idéias de trabalhos futuros.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES]The aim of the Kinship Verification in the Wild Evaluation (held in conjunction with the 2015 IEEE International Conference on Automatic Face and Gesture Recognition, Ljubljana, Slovenia) was to evaluate different kinship verification algorithms. For this task, two datasets were made available and three possible experimental protocols (unsupervised, image-restricted, and image-unrestricted) were designed. Five institutions submitted their results to the evaluation: (i) Politecnico di Torino, Italy; (ii) LIRIS-University of Lyon, France; (iii) Universidad de Las Palmas de Gran Canaria, Spain; (iv) Nanjing University of Aeronautics and Astronautics, China; and (v) Bar Ilan University, Israel. Most of the participants tackled the image-restricted challenge and experimental results demonstrated better kinship verification performance than the baseline methods provided by the organizers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Riconoscere un gesto, tracciarlo ed identificarlo è una operazione complessa ed articolata. Negli ultimi anni, con l’avvento massivo di interfacce interattive sempre più sofisticate, si sono ampliati gli approcci nell’interazione tra uomo e macchina. L’obiettivo comune, è quello di avere una comunicazione “trasparente” tra l’utente e il computer, il quale, deve interpretare gesti umani tramite algoritmi matematici. Il riconoscimento di gesti è un modo per iniziare a comprendere il linguaggio del corpo umano da parte della macchina. Questa disciplina, studia nuovi modi di interazione tra questi due elementi e si compone di due macro obiettivi : (a) tracciare i movimenti di un particolare arto; (b) riconoscere tale tracciato come un gesto identificativo. Ognuno di questi due punti, racchiude in sé moltissimi ambiti di ricerca perché moltissimi sono gli approcci proposti negli anni. Non si tratta di semplice cattura dell’immagine, è necessario creare un supporto, a volte molto articolato, nel quale i dati grezzi provenienti dalla fotocamera, necessitano di filtraggi avanzati e trattamenti algoritmici, in modo tale da trasformare informazioni grezze, in dati utilizzabili ed affidabili. La tecnologia riguardo la gesture recognition è rilevante come l’introduzione delle interfacce tattili sui telefoni intelligenti. L’industria oggi ha iniziato a produrre dispositivi in grado di offrire una nuova esperienza, la più naturale possibile, agli utenti. Dal videogioco, all’esperienza televisiva gestita con dei piccoli gesti, all’ambito biomedicale, si sta introducendo una nuova generazione di dispositivi i cui impieghi sono innumerevoli e, per ogni ambito applicativo, è necessario studiare al meglio le peculiarità, in modo tale da produrre un qualcosa di nuovo ed efficace. Questo lavoro di tesi ha l’obiettivo di apportare un contributo a questa disciplina. Ad oggi, moltissime applicazioni e dispositivi associati, si pongono l’obiettivo di catturare movimenti ampi: il gesto viene eseguito con la maggior parte del corpo e occupa una posizione spaziale rilevante. Questa tesi vuole proporre invece un approccio, nel quale i movimenti da seguire e riconoscere sono fatti “nel piccolo”. Si avrà a che fare con gesti classificati fini, dove i movimenti delle mani sono compiuti davanti al corpo, nella zona del torace, ad esempio. Gli ambiti applicativi sono molti, in questo lavoro si è scelto ed adottato l’ambito artigianale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Negli ultimi anni si è assistito ad una radicale rivoluzione nell’ambito dei dispositivi di interazione uomo-macchina. Da dispositivi tradizionali come il mouse o la tastiera si è passati allo sviluppo di nuovi sistemi capaci di riconoscere i movimenti compiuti dall’utente (interfacce basate sulla visione o sull’uso di accelerometri) o rilevare il contatto (interfacce di tipo touch). Questi sistemi sono nati con lo scopo di fornire maggiore naturalezza alla comunicazione uomo-macchina. Le nuove interfacce sono molto più espressive di quelle tradizionali poiché sfruttano le capacità di comunicazione naturali degli utenti, su tutte il linguaggio gestuale. Essere in grado di riconoscere gli esseri umani, in termini delle azioni che stanno svolgendo o delle posture che stanno assumendo, apre le porte a una serie vastissima di interessanti applicazioni. Ad oggi sistemi di riconoscimento delle parti del corpo umano e dei gesti sono ampiamente utilizzati in diversi ambiti, come l’interpretazione del linguaggio dei segni, in robotica per l’assistenza sociale, per indica- re direzioni attraverso il puntamento, nel riconoscimento di gesti facciali [1], interfacce naturali per computer (valida alternativa a mouse e tastiera), ampliare e rendere unica l’esperienza dei videogiochi (ad esempio Microsoft 1 Introduzione Kinect© e Nintendo Wii©), nell’affective computing1 . Mostre pubbliche e musei non fanno eccezione, assumendo un ruolo cen- trale nel coadiuvare una tecnologia prettamente volta all’intrattenimento con la cultura (e l’istruzione). In questo scenario, un sistema HCI deve cercare di coinvolgere un pubblico molto eterogeneo, composto, anche, da chi non ha a che fare ogni giorno con interfacce di questo tipo (o semplicemente con un computer), ma curioso e desideroso di beneficiare del sistema. Inoltre, si deve tenere conto che un ambiente museale presenta dei requisiti e alcune caratteristiche distintive che non possono essere ignorati. La tecnologia immersa in un contesto tale deve rispettare determinati vincoli, come: - non può essere invasiva; - deve essere coinvolgente, senza mettere in secondo piano gli artefatti; - deve essere flessibile; - richiedere il minor uso (o meglio, la totale assenza) di dispositivi hardware. In questa tesi, considerando le premesse sopracitate, si presenta una sistema che può essere utilizzato efficacemente in un contesto museale, o in un ambiente che richieda soluzioni non invasive. Il metodo proposto, utilizzando solo una webcam e nessun altro dispositivo personalizzato o specifico, permette di implementare i servizi di: (a) rilevamento e (b) monitoraggio dei visitatori, (c) riconoscimento delle azioni.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los sensores inerciales (acelerómetros y giróscopos) se han ido introduciendo poco a poco en dispositivos que usamos en nuestra vida diaria gracias a su minituarización. Hoy en día todos los smartphones contienen como mínimo un acelerómetro y un magnetómetro, siendo complementados en losmás modernos por giróscopos y barómetros. Esto, unido a la proliferación de los smartphones ha hecho viable el diseño de sistemas basados en las medidas de sensores que el usuario lleva colocados en alguna parte del cuerpo (que en un futuro estarán contenidos en tejidos inteligentes) o los integrados en su móvil. El papel de estos sensores se ha convertido en fundamental para el desarrollo de aplicaciones contextuales y de inteligencia ambiental. Algunos ejemplos son el control de los ejercicios de rehabilitación o la oferta de información referente al sitio turístico que se está visitando. El trabajo de esta tesis contribuye a explorar las posibilidades que ofrecen los sensores inerciales para el apoyo a la detección de actividad y la mejora de la precisión de servicios de localización para peatones. En lo referente al reconocimiento de la actividad que desarrolla un usuario, se ha explorado el uso de los sensores integrados en los dispositivos móviles de última generación (luz y proximidad, acelerómetro, giróscopo y magnetómetro). Las actividades objetivo son conocidas como ‘atómicas’ (andar a distintas velocidades, estar de pie, correr, estar sentado), esto es, actividades que constituyen unidades de actividades más complejas como pueden ser lavar los platos o ir al trabajo. De este modo, se usan algoritmos de clasificación sencillos que puedan ser integrados en un móvil como el Naïve Bayes, Tablas y Árboles de Decisión. Además, se pretende igualmente detectar la posición en la que el usuario lleva el móvil, no sólo con el objetivo de utilizar esa información para elegir un clasificador entrenado sólo con datos recogidos en la posición correspondiente (estrategia que mejora los resultados de estimación de la actividad), sino también para la generación de un evento que puede producir la ejecución de una acción. Finalmente, el trabajo incluye un análisis de las prestaciones de la clasificación variando el tipo de parámetros y el número de sensores usados y teniendo en cuenta no sólo la precisión de la clasificación sino también la carga computacional. Por otra parte, se ha propuesto un algoritmo basado en la cuenta de pasos utilizando informaiii ción proveniente de un acelerómetro colocado en el pie del usuario. El objetivo final es detectar la actividad que el usuario está haciendo junto con la estimación aproximada de la distancia recorrida. El algoritmo de cuenta pasos se basa en la detección de máximos y mínimos usando ventanas temporales y umbrales sin requerir información específica del usuario. El ámbito de seguimiento de peatones en interiores es interesante por la falta de un estándar de localización en este tipo de entornos. Se ha diseñado un filtro extendido de Kalman centralizado y ligeramente acoplado para fusionar la información medida por un acelerómetro colocado en el pie del usuario con medidas de posición. Se han aplicado también diferentes técnicas de corrección de errores como las de velocidad cero que se basan en la detección de los instantes en los que el pie está apoyado en el suelo. Los resultados han sido obtenidos en entornos interiores usando las posiciones estimadas por un sistema de triangulación basado en la medida de la potencia recibida (RSS) y GPS en exteriores. Finalmente, se han implementado algunas aplicaciones que prueban la utilidad del trabajo desarrollado. En primer lugar se ha considerado una aplicación de monitorización de actividad que proporciona al usuario información sobre el nivel de actividad que realiza durante un período de tiempo. El objetivo final es favorecer el cambio de comportamientos sedentarios, consiguiendo hábitos saludables. Se han desarrollado dos versiones de esta aplicación. En el primer caso se ha integrado el algoritmo de cuenta pasos en una plataforma OSGi móvil adquiriendo los datos de un acelerómetro Bluetooth colocado en el pie. En el segundo caso se ha creado la misma aplicación utilizando las implementaciones de los clasificadores en un dispositivo Android. Por otro lado, se ha planteado el diseño de una aplicación para la creación automática de un diario de viaje a partir de la detección de eventos importantes. Esta aplicación toma como entrada la información procedente de la estimación de actividad y de localización además de información almacenada en bases de datos abiertas (fotos, información sobre sitios) e información sobre sensores reales y virtuales (agenda, cámara, etc.) del móvil. Abstract Inertial sensors (accelerometers and gyroscopes) have been gradually embedded in the devices that people use in their daily lives thanks to their miniaturization. Nowadays all smartphones have at least one embedded magnetometer and accelerometer, containing the most upto- date ones gyroscopes and barometers. This issue, together with the fact that the penetration of smartphones is growing steadily, has made possible the design of systems that rely on the information gathered by wearable sensors (in the future contained in smart textiles) or inertial sensors embedded in a smartphone. The role of these sensors has become key to the development of context-aware and ambient intelligent applications. Some examples are the performance of rehabilitation exercises, the provision of information related to the place that the user is visiting or the interaction with objects by gesture recognition. The work of this thesis contributes to explore to which extent this kind of sensors can be useful to support activity recognition and pedestrian tracking, which have been proven to be essential for these applications. Regarding the recognition of the activity that a user performs, the use of sensors embedded in a smartphone (proximity and light sensors, gyroscopes, magnetometers and accelerometers) has been explored. The activities that are detected belong to the group of the ones known as ‘atomic’ activities (e.g. walking at different paces, running, standing), that is, activities or movements that are part of more complex activities such as doing the dishes or commuting. Simple, wellknown classifiers that can run embedded in a smartphone have been tested, such as Naïve Bayes, Decision Tables and Trees. In addition to this, another aim is to estimate the on-body position in which the user is carrying the mobile phone. The objective is not only to choose a classifier that has been trained with the corresponding data in order to enhance the classification but also to start actions. Finally, the performance of the different classifiers is analysed, taking into consideration different features and number of sensors. The computational and memory load of the classifiers is also measured. On the other hand, an algorithm based on step counting has been proposed. The acceleration information is provided by an accelerometer placed on the foot. The aim is to detect the activity that the user is performing together with the estimation of the distance covered. The step counting strategy is based on detecting minima and its corresponding maxima. Although the counting strategy is not innovative (it includes time windows and amplitude thresholds to prevent under or overestimation) no user-specific information is required. The field of pedestrian tracking is crucial due to the lack of a localization standard for this kind of environments. A loosely-coupled centralized Extended Kalman Filter has been proposed to perform the fusion of inertial and position measurements. Zero velocity updates have been applied whenever the foot is detected to be placed on the ground. The results have been obtained in indoor environments using a triangulation algorithm based on RSS measurements and GPS outdoors. Finally, some applications have been designed to test the usefulness of the work. The first one is called the ‘Activity Monitor’ whose aim is to prevent sedentary behaviours and to modify habits to achieve desired objectives of activity level. Two different versions of the application have been implemented. The first one uses the activity estimation based on the step counting algorithm, which has been integrated in an OSGi mobile framework acquiring the data from a Bluetooth accelerometer placed on the foot of the individual. The second one uses activity classifiers embedded in an Android smartphone. On the other hand, the design of a ‘Travel Logbook’ has been planned. The input of this application is the information provided by the activity and localization modules, external databases (e.g. pictures, points of interest, weather) and mobile embedded and virtual sensors (agenda, camera, etc.). The aim is to detect important events in the journey and gather the information necessary to store it as a journal page.