49 resultados para Geotectonic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on newly discovered mud volcanoes located at about 4500 m water depth 90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a >400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, Delta18O, DeltaD) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this project was a petrogeochemical study of igneous rocks in the areas of the Mohns and Knipovich Ridges, both being the northern extensions of the Mid-Atlantic Ridge (MAR), using data available for quenching glass samples collected during Cruises 36 and 38 of R/V Akademic Mstislav Keldysh and during Cruise 15 of R/V Professor Logachev. Results of igneous rock studying from the Mohns and Knipovich Ridges at the background of evolution of the total North Atlantic Province, which had been identified earlier from tectonic and geophysical data, showed that igneous rocks of the Knipovich Ridge can be ranked as shallow tholeiites, primary melts of which were relatively rich in Na and Si and poor in Fe. This type of magma is characteristic of colder regions of the oceanic lithosphere. Its occurrence in the Knipovich Ridge and its potential propagation up to the Gakkel Ridge suggest that igneous rocks of this region originated under conditions of passive spreading in contrast to the MAR region in vicinity of Iceland and Azores, where substantial contribution of hotter material of a rising plume contributed to formation of the oceanic crust. The North Atlantic Ocean is the youngest province in terms of ocean-floor opening. Geologically and geophysically it is one of well studied regions of the World Ocean. Nevertheless some basic key items of its origin still remain to be clarified. In 1975 Scatler et al. proved specifics of this region manifested in growth of the gravity field, and also in relative height of the ocean floor in the region of 33-70°N, which was associated by them with rise of the hotter mantle, as compared with common regions of the Mid-Atlantic Ridge. Later this view was confirmed by character of magmatism, which differed in depth of generation and by melting degree of the resulting primary magma. Uniqueness of the North Atlantic region was also proved by the fact that this region was marked by extensive geochemical anomalies associated with Azores, Iceland, and Jan Mayen. All of these data allow to consider the northern part of the MAR (north of 33°N) as an united global geotectonic province. The Mohns and Knipovich Ridges located north of Iceland locate at the northern end of this province. This is the least known region. Therefore, new data for ridge areas of 73-77°N are needed for more complete geologic history of the Arctic Basin. The aim of this study was to carry out a complex comparison of magmatism at the Mohns and Knipovich Ridges with magmatism at large segments of the MAR northern province and to reconstruct mechanisms of primary magma formation, as well as conditions of their fractionation. This paper was based on results of studying quenched glasses, which reflect evolution of melt in the course of its formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the Geological Expedition to the Shackleton Range, Antarctica (GEISHA) in 1987/88, samples were taken from twenty-one basaltic dykes for palaeomagnetic investigations. The directions of characteristic remanent magnetization (ChRM) of the dykes were determined by thermal and alternating-field demagnetization of 268 cores drilled from the specimens collected. Moreover, on account of the hydrothermal and sometimes low-grade metamorphism of the dyke rock and the resulting partial modification of the primary magnetization, not only were comprehensive magnetic studies carried out, but also ore-microscopic examination. Only thus was it possible to achieve a reasonable assessment and interpretation of the remanent magnetization. Jurassic and Silurian-Devonian ages were confirmed for the dykes of the northern and northwestern Shackleton Range by comparison of the paleopole positions calculated on the basis of the ChRM of the dykes with the known pole positions for the eastern Antarctic, as well as with polar-wandering curves for Gondwana. Radiometric ages were also determined far some of the dykes. Middle and Late Proterozoic ages are postulated far the dykes in the Read Mountains. Conclusions on the geotectonic relations of the Shackleton Range can also be drawn from the palaeomagnetic data. It has been postulated that the main strike direction, which differs distinctly from that of the Ross orogen, is due to rotation or displacement of the Shackleton Range crustal block; however, this was not corroborated. The pole positions for the Shackleton Range agree with those of rocks of the same age from other areas of East Antarctica and its positions in the Palaeozoic-Mesozoic polar-wandering path for Gondwana are evidence against the idea of rotation and rather suggest that the position of the Shakleton Range crustal block is autochthonous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New maps of free-air and the Bouguer gravity anomalies on the Weddell Sea sector (70-81° S, 6-75° W) of Antarctica are presented. These maps are based on the first computer compilation of available gravity data collected by ''Sevmorgeologia'' in 1976-89 in the southern Weddell Sea and adjacent coasts of western Dronning Maud Land (WDML) and Coats Land. The accomplished gravity studies comprise airborne observations with a line spacing of about 20 km and conventional measurements at over-the-ice points, which were spaced at 10-30 km and supplemented by seismic soundings. Hence, anomalies on the maps represent mainly large-scale and deep crustal features. The dominant feature in free-air gravity map is a large dipolar gravity anomaly stretching along the continental margin. Following the major grain of seabed morphology this shelf-edge/slope anomaly (SESA) is clearly divided into three segments characterized by diverse anomaly amplitudes, wavelengths and trends. They are associated with continental margins of different geotectonic provinces of Antarctica surrounding the Weddell Sea. Apparent distinctions in the SESA signatures are interpreted as the gravity expression of tectonic, deep crustal structure segmentation of the continental margin. The prominent gravity highs (100-140 mGal) of the shelf edge anomaly mapped along WDML are assumed to represent high-density mantle injections intruded into the middle/lower crust during initial rifting of continental breakup. Enlarged wavelengths and diminished amplitudes of the gravity anomaly westwards, along the Weddell Sea embayment (WSE) margin, reflect a widening of the continental slope and a significant increase in thickness of underlying sediment strata. Low amplitude, negative free-air anomalies in the Filchner-Ronne Ice Shelves (FRIS) contrast sharply with the dominating positive anomalies offshore. This indicates a greater sedimentary thickness of the basin in this area. Crustal response to the enlarged sediment load is impressed in mostly positive features of the Bouguer gravity field observed here. Two pronounced positive Bouguer anomalies of 50-70 mGal and an average widths of 200 km dominate the Weddell Sea embayment margins towards the Antarctic Peninsula and the East Antarctic craton. They correlate well with very deep seabed troughs (> 1000 m below sea level). The gravity highs are most likely caused by a shallow upper mantle underneath graben-rift structures evolved at the margins of the WSE basin. A regional zone (> 100 km in width) of the prominent Bouguer and free-air negative anomalies (-40 to -60 mGal) adjacent Coats Land to the north of the ice shelf edge may indicate the presence of the thick old cratonic crust far offshore beneath the Weddell Sea Embayment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Longling Coal Mine (W. Yunnan) is situated in an area of substantial geotectonic activity. Its Late Pliocene palynoflora is of considerable interest, since the area represents a centre of biodiversity. Eighty-two palynomorphs belonging to 61 families were recovered from the lignite. The palynoflora is dominated by angiosperms (68.3%), with ferns (24.4%), gymnosperms (4.9%) and algae (2.4%). Comparisons indicate that most of the palynoflora was derived from the Montane Humid Evergreen Broad-leaved Forest, with lesser contributions from the Tsuga dumosa Forest and Evergreen Coniferous Broad-leaved Mixed Forest, as well as the Montane Mossy Evergreen Broad-leaved Forest. This indicates that the Late Pliocene climate was cooler than that of the present. In the course of the accumulation of the lignite, the climate underwent five major phases of warming and cooling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metasediments in the three early Palaeozoic Ross orogenic terranes in northern Victoria Land and Oates Land (Antarctica) are geochemically classified as immature litharenites to wackes and moderately mature shales. Highly mature lithotypes with Chemical Index of Weathering values of >=95 are typically absent. Geochemical and Rb-Sr and Sm-Nd isotope results indicate that the turbiditic metasediments of the Cambro-Ordovician Robertson Bay Group in the eastern Robertson Bay Terrane represent a very homogeneous series lacking significant compositional variations. Major variations are only found in chemical parameters which reflect differences in degree of chemical weathering of their protoliths and in mechanical sorting of the detritus. Geochemical data, 87Sr/ 86Sr t=490 Ma ratios of 0.7120 - 0.7174, epsilonNd, t=490 Ma values of -7.6 to -10.3 and single-stage Nd-model ages of 1.7 - 1.9 Ga are indicative of an origin from a chemically evolved crustal source of on average late Palaeoproterozoic formation age. There is no evidence for significant sedimentary infill from primitive "ophiolitic" sources. Metasediments of the Middle Cambrian Molar Formation (Bowers Terrane) are compositionally strongly heterogeneous. Their major and trace element data and Sm-Nd isotope data (epsilonNd, t=500 Ma values of -14.3 to -1.2 and single-stage Nd-model ages of 1.7 - 2.1 Ga) can be explained by mixing of sedimentary input from an evolved crustal source of at least early Palaeoproterozoic formation age and from a primitive basaltic source. The chemical heterogeneity of metasediments from the Wilson Terrane is largely inherited from compositional variations of their precursor rocks as indicated by the Ni vs TiO2 diagram. Single-stage Nd-model ages of 1.6 -2.2 Ga for samples from more western inboard areas of the Wilson Terrane (epsilonNd, t=510 Ma -7.0 to -14.3) indicate a relatively high proportion of material derived from a crustal source with on average early Palaeoproterozoic formation age. Metasedimentary series in an eastern, more outboard position (epsilonNd, t=510 Ma -5.4 to -10.0; single-stage Nd model ages 1.4 - 1.9) on the contrary document stronger influence of a more primitive source with younger formation ages. The chemical and isotopic characteristics of metasediments from the Bowers and Wilson terranes can be explained by variable contributions from two contrasting sources: a cratonic continental crust similar to the Antarctic Shield exposed in Georg V Land and Terre Adélie some hundred kilometers west of the study area and a primitive basaltic source probably represented by the Cambrian island-arc of the Bowers Terrane. While the data for metasediments of the Robertson Bay Terrane are also compatible with an origin from an Antarctic-Shield-type source, there is no direct evidence from their geochemistry or isotope geochemistry for an island-arc component in these series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In western Neuschwabenland basic dikes occur in the Jurassic lavas and Permian sediments of Vestfjella as weil as in the Precambrian sedimentary-volcanogenic rock sequence of the Ahlmannryggen and in the Precambrian crystalline complexes of Heimefrontfjella and Mannefallknausane. The concentration of the dikes in Vestfjella is conspicuous. Two main directions of strike perpendicular to each other are recognizable, from which the NE-SW striking one is predominant. The direction of the dikes coincides with the Mesozoic and younger fracture tectonics. Age relationships by structural, petrographical and geochemical observations are confirmed by palaeomagnetic and radiometrie age determinations from PETERS et al. (1986). Considerations on the geochemistry of further dolerite occurrences from Antarctica and other regions of the Gondwana continent are pointed out. Finally comparisons with the analogous South African dike system show the geotectonic significance of the dolerite dikes for the break-up of Gondwana.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actualmente y desde hace ya más de 25 años, el Método de “Predicción de las Direcciones Principales de Drenaje Subterráneo en Macizos Anisótropos”, ha sido utilizado con éxito en diferentes terrenos Kársticos como: calizas, yesos, cuarcitas, pizarras, granitos y criokarst (karst en el hielo glaciar). Sin embargo hasta ahora, nunca se había validado en terrenos volcánicos donde está focalizada esta tesis que lleva por título, Validación de dicho Método en los Terrenos Volcánicos del Macizo de Anaga en Tenerife. Este Método matemático consiste esencialmente en “Predecir y Cuantificar” las direcciones principales de drenaje turbulento subterráneo en macizos anisótropos. Para ello se basa en el estudio realizado en campo de los tectoglifos o deformaciones permanentes del macizo, impresas éstas en la roca, como consecuencia de los esfuerzos tectónicos a los que ha estado sometido dicho macizo. Se consigue de esta manera cubrir el vacío para macizos anisótropos que existe con el modelo matemático de flujo subterráneo laminar (macizos isótropos) definido por Darcy (1856). Para validar el Método se ha elegido el macizo de Anaga, pues es la zona de mayor anisotropía existente en la isla de Tenerife, conformada por una gran y extensa red de diques de diversas formas y tamaños que pertenecen a la familia de diques del eje estructural NE de la isla. En dicho macizo se realizó un exhaustivo trabajo de campo con la toma 331 datos (diques basálticos) y se aplicó el Método, consiguiendo definir las direcciones preferentes de drenaje subterráneo en el macizo de Anaga. Esta predicción obtenida se contrastó con la realidad del drenaje en la zona, conocida gracias a la existencia de cinco galerías ubicadas en la zona trabajo, de las cuales se tiene información sobre sus alumbramientos. En todos los casos se demuestra la bondad de la predicción obtenida con el Método. Queda demostrado que a mayor caos geológico o geotectónico, se ha conseguido mejor predicción del Método, obteniéndose resultados muy satisfactorios para aquellas galerías de agua en las que su rumbo de avance fue coincidente con la dirección perpendicular a la obtenida con la predicción dada por el Método, como dirección preferente de drenaje en la zona en la que se encuentra ubicada cada galería. No cabe duda que la validación de Método en los terrenos volcánicos de Tenerife, supondrá un cambio considerable en el mundo de la hidrogeología en este tipo de terrenos. Es la única herramienta matemática que se dispone para predecir un rumbo acertado en el avance de la perforación de las galerías de aguas, lo que conlleva al mismo tiempo un ahorro importantísimo en la ejecución de las obras. Por otro lado, el Método deja un importante legado a la sociedad canaria, pues con él se abren numerosas vías de trabajo e investigación que generarán un importante desarrollo en el mundo de la hidrogeología volcánica. ABSTRACT Currently and for over 25 years now, the Method of "Prediction of Subsurface Drainage Main Directions in Anisotropic Massifs" has been successfully used in various karstic terrains such as: limestone, gypsum, quartzite, slate, granite and criokarst (karst in the glacier ice). However, until now, it had never been validated in volcanic terrains where is focused this thesis entitled Validation of such Method in the Anaga Massif Volcanic Terrains, in Tenerife. This mathematical method is essentially "predict and quantify" the main directions of groundwater turbulent drainage in anisotropic massifs. This is based on field study of tectoglifes or permanent deformation of the massif, printed on the rocks as a result of previous tectonic stresses. Therefore it is possible to use in anisotropic rock mathematical model instead of the isotropic laminar flow mathematical models defined by Darcy (1856). The Anaga Massif have been chosen to validate the method, because it presents the greatest anisotropy in Tenerife Island, shaped by a large and extensive network of dikes of various shapes and sizes that belong to the family of NE structural axis dikes of the island. An exhaustive field work was carried out in such massif, with 331 collected data (basaltic dikes) and the method was applied, in order to define the preferred direction of the underground drainage in the Anaga massif. This obtained prediction was contrasted to the reality of the drainage in the area, known thanks to the existence of five galleries located in the work area, from which information about their springs was available. In all cases it was possible to demonstrate the fitness of the prediction obtained by the method. It had been demonstrated that a greater geological or geotectonic chaos enhances a better prediction of the method, that predicted very satisfactory results for those water galleries which directions were perpendicular to that predicted by the Method as a drainage preferential direction, for the zone where was located each gallery. No doubt that the validation of the use of the Method in the volcanic terrain of Tenerife, means a considerable change in the world of hydrogeology in this type of terrain. It is the only mathematical tool available to predict a successful drilling direction in advancing water galleries, what also leads to major savings in execution of the drilling works. Furthermore, the method leaves an important legacy to the Canary Islands society, because it opens many lines of work and research to generate a significant development in the world of volcanic hydrogeology.