997 resultados para Geometric pattern


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported in this paper is motivated by biomimetic inspiration - the transformation of patterns. The major issue addressed is the development of feasible methods for transformation based on a macroscopic tool. The general requirement for the feasibility of the transformation method is determined by classifying pattern formation approaches an their characteristics. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some robotic agents are introduced. A feasible method for transforming patterns geometrically, based on the macroscopic parameter operation of a swarm is considered. The transformation method is applied to a swarm model which lends itself to the transformation technique. Simulation studies are developed to validate the feasibility of the approach, and do indeed confirm the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported in this paper is motivated by the need to investigate general methods for pattern transformation. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some agents in the pattern are introduced. The need for a mathematical tool and simulations for visualizing the behavior of a transformation method is highlighted. A mathematical method based on the Moebius transformation is proposed. The transformation method involves discretization of events for planning paths of individual robots in a pattern. Simulations on a particle physics simulator are used to validate the feasibility of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The output of the sheet metal forming process is subject to much variation. This paper develops a method to measure shape variation in channel forming and relate this back to the corresponding process parameter levels of the manufacturing set-up to create an inverse model. The shape variation in the channels is measured using a modified form of the point distribution model (also known as the active shape model). This means that channels can be represented by a weighting vector of minimal linear dimension that contains all the shape variation information from the average formed channel.

The inverse models were created using classifiers that related the weighting vectors to the process parameter levels for the blank holder force (BHF), die radii (DR) and tool gap (TG) of the parameters. Several classifiers were tested: linear, quadratic Gaussian and artificial neural networks. The quadratic Gaussian classifiers were the most accurate and the most consistent type of classifier over all the parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexity of the forging process ensures that there is inherent variability in the geometric shape of a forged part. While knowledge of shape error, comparing the desired versus the measured shape, is significant in measuring part quality the question of more interest is what can this error suggest about the forging process set-up? The first contribution of this paper is to develop a shape error metric which identifies geometric shape differences that occur from a desired forged part. This metric is based on the point distribution deformable model developed in pattern recognition research. The second contribution of this paper is to propose an inverse model that identifies changes in process set-up parameter values by analysing the proposed shape error metric. The metric and inverse models are developed using two sets of simulated hot-forged parts created using two different die pairs (simple and 'M'-shaped die pairs). A neural network is used to classify the shape data into three arbitrarily chosen levels for each parameter and it is accurate to at least 77 per cent in the worst case for the simple die pair data and has an average accuracy of approximately 80 per cent when classifying the more complex 'M'-shaped die pair data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial process design of a roll forming system is often based on the traditional ‘flower pattern diagram’. In this diagram, the cross sections of the strip at each roll stand are superimposed on a single plane; the diagram is a 2D representation of the 3D process. In the present work, the flower pattern is extended into three dimensions. To demonstrate the method, the forming path or trajectory of a point at the edge of the strip during forming a V-section is considered. The forming path is a surface curve that lies on a cylindrical surface having its axis along the machine axis. This surface is unwrapped to give its plane development and important features of the forming process can be determined and are readily interpreted from this plane curve. It is shown that at any stage in the process, the axial strain and the curvature of the sheet adjacent to the point are dependent on the slope of the trajectory in this plane projection. This new diagram, which apparently has not been used previously, provides a useful initial method of examining the roll forming process and optimising the flower pattern. The model is purely geometric, as is the original flower pattern approach, and does not include the effect of material behaviour. The concept is applied to several cases available in the literature. It shows that the lowest level of shape defect in the part is achieved when the trajectory of the strip edge follows the shortest line length between the start and finish of forming, leading to the least longitudinal strain introduced in the flange. This trend is in agreement with previous experimental observations, suggesting that the analytical model proposed may be applied for early process design and optimisation before time-consuming numerical analysis is performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The description of patterns of variation in any character system within well-defined species is fundamental for understanding lineage diversification and the identification of geographic units that represent opportunities for sustained evolutionary divergence. In this paper, we analyze intraspecific variation in cranial shape in the Pumpkin Toadlet, Brachycephalus ephippium-a miniaturized species composed of isolated populations on the slopes of the mountain ranges of southeastern Brazil. Shape variables were derived using geometric-statistical methods that describe shape change as localized deformations in a spatial framework defined by anatomical landmarks in the cranium of B. ephippium. By statistically weighting differences between landmarks that are not close together (changes at larger geometric scale), cranial variation among geographic samples of B. ephippium appears continuous with no obvious gaps. This pattern of variation is caused by a confounding effect between within-sample allometry and among-sample shape differences. In contrast, by statistically weighting differences between landmarks that are at close spacing (changes at smaller geometric scale), differences in shape within- and among-sample variation are not confounded, and a marked geographic differentiation among population samples of B. ephippium emerges. The observed pattern of geographic differentiation in cranial shape apparently cannot be explained as isolation-by-distance. This study provides the first evidence that the detection of morphological variation or lack thereof, that is, morphological conservatism, may be conditional on the scale of measurement of variation in shape within the methodological formalism of geometric morphometrics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The model of development and evolution of complex morphological structures conceived by Atchley and Hall in 1991 (Biol. Rev. 66:101-157), which establishes that changes at the macroscopic, morphogenetic level can be statistically detected as variation in skeletal units at distinct scales, was applied in combination with the formalism of geometric morphometrics to study variation in mandible shape among populations of the rodent species Thrichomys apereoides. The thin-plate spline technique produced geometric descriptors of shape derived from anatomical landmarks in the mandible, which we used with graphical and inferential approaches to partition the contribution of global and localized components to the observed differentiation in mandible shape. A major pattern of morphological differentiation in T. apereoides is attributable to localized components of shape at smaller geometric scales associated with specific morphogenetic units of the mandible. On the other hand, a clinal trend of variation is associated primarily with localized components of shape at larger geometric scales. Morphogenetic mechanisms assumed to be operating to produce the observed differentiation in the specific units of the mandible include mesenchymal condensation differentiation, muscle hypertrophy, and tooth growth. Perspectives for the application of models of morphological evolution and geometric morphometrics to morphologically based systematic biology are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In equine laminitis, the deep digital flexor muscle (DDFM) appears to have increased muscle force, but evidence-based confirmation is lacking. OBJECTIVES: The purpose of this study was to test if the DDFM of laminitic equines has an increased muscle force detectable by needle electromyography interference pattern analysis (IPA). ANIMALS AND METHODS: The control group included six Royal Dutch Sport horses, three Shetland ponies and one Welsh pony [10 healthy, sound adults weighing 411 ± 217 kg (mean ± SD) and aged 10 ± 5 years]. The laminitic group included three Royal Dutch Sport horses, one Friesian, one Haflinger, one Icelandic horse, one Welsh pony, one miniature Appaloosa and six Shetland ponies (14 adults, weight 310 ± 178 kg, aged 13 ± 6 years) with acute/chronic laminitis. The electromyography IPA measurements included firing rate, turns/second (T), amplitude/turn (M) and M/T ratio. Statistical analysis used a general linear model with outcomes transformed to geometric means. RESULTS: The firing rate of the total laminitic group was higher than the total control group. This difference was smaller for the ponies compared to the horses; in the horses, the geometric mean difference of the laminitic group was 1.73 [geometric 95% confidence interval (CI) 1.29-2.32], and in the ponies this value was 1.09 (geometric 95% CI 0.82-1.45). CONCLUSION AND CLINICAL RELEVANCE: In human medicine, an increased firing rate is characteristic of increased muscle force. Thus, the increased firing rate of the DDFM in the context of laminitis suggests an elevated muscle force. However, this seems to be only a partial effect as in this study, the unchanged turns/second and amplitude/turn failed to prove the recruitment of larger motor units with larger amplitude motor unit potentials in laminitic equids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripelike patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh- Bénard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers. In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment but usually the huge amount of 3D information is unmanageable by the robot storage and computing capabilities. A data compression is necessary to store and manage this information but preserving as much information as possible. In this paper, we propose a 3D lossy compression system based on plane extraction which represent the points of each scene plane as a Delaunay triangulation and a set of points/area information. The compression system can be customized to achieve different data compression or accuracy ratios. It also supports a color segmentation stage to preserve original scene color information and provides a realistic scene reconstruction. The design of the method provides a fast scene reconstruction useful for further visualization or processing tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most object-based approaches to Geographical Information Systems (GIS) have concentrated on the representation of geometric properties of objects in terms of fixed geometry. In our road traffic marking application domain we have a requirement to represent the static locations of the road markings but also enforce the associated regulations, which are typically geometric in nature. For example a give way line of a pedestrian crossing in the UK must be within 1100-3000 mm of the edge of the crossing pattern. In previous studies of the application of spatial rules (often called 'business logic') in GIS emphasis has been placed on the representation of topological constraints and data integrity checks. There is very little GIS literature that describes models for geometric rules, although there are some examples in the Computer Aided Design (CAD) literature. This paper introduces some of the ideas from so called variational CAD models to the GIS application domain, and extends these using a Geography Markup Language (GML) based representation. In our application we have an additional requirement; the geometric rules are often changed and vary from country to country so should be represented in a flexible manner. In this paper we describe an elegant solution to the representation of geometric rules, such as requiring lines to be offset from other objects. The method uses a feature-property model embraced in GML 3.1 and extends the possible relationships in feature collections to permit the application of parameterized geometric constraints to sub features. We show the parametric rule model we have developed and discuss the advantage of using simple parametric expressions in the rule base. We discuss the possibilities and limitations of our approach and relate our data model to GML 3.1. © 2006 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis begins by providing a review of techniques for interpreting the thermal response at the earth's surface acquired using remote sensing technology. Historic limitations in the precision with which imagery acquired from airborne platforms can be geometrically corrected and co-registered has meant that relatively little work has been carried out examining the diurnal variation of surface temperature over wide regions. Although emerging remote sensing systems provide the potential to register temporal image data within satisfactory levels of accuracy, this technology is still not widely available and does not address the issue of historic data sets which cannot be rectified using conventional parametric approaches. In overcoming these problems, the second part of this thesis describes the development of an alternative approach for rectifying airborne line-scanned imagery. The underlying assumption that scan lines within the imagery are straight greatly reduces the number of ground control points required to describe the image geometry. Furthermore, the use of pattern matching procedures to identify geometric disparities between raw line-scanned imagery and corresponding aerial photography enables the correction procedure to be almost fully automated. By reconstructing the raw image data on a truly line-by-line basis, it is possible to register the airborne line-scanned imagery to the aerial photography with an average accuracy of better than one pixel. Providing corresponding aerial photography is available, this approach can be applied in the absence of platform altitude information allowing multi-temporal data sets to be corrected and registered.