990 resultados para Geometria - Problemas famosos


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Educação Matemática - IGCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Educação Matemática - IGCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Educação Matemática - IGCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Algoritmos para reconhecimento de 3-variedades utilizam-se do conceito de superfície normal, sendo assim, pode-se então tratar problemas de teoria de 3-variedades como sendo de programação linear. Como exemplos tem-se o Algoritmo de reconhecimento da 3-esfera triangulável de Rubinstein-Thompson que é implementado na suíte de software Regina, como a decomposição soma conexa de 3-variedades. A completa classificação de 3-variedades pode ser realizada por meio de algoritmos, possuindo assim relevância para o Programa de Geometrização de Thurston para obtenção de resultados inicialmente utilizando topologia computacional. O objetivo do presente trabalho é discorrer sobre uma aplicação do software Regina. Obteve-se durante a elaboração do presente trabalho, o resultado entre a comparação da 3-esfera homológica de Poincaré com a 3-esfera, parte importante para o entendimento da Conjectura de Poincaré e do Programa de Geometrização.