985 resultados para Geology, Stratigraphic.
Resumo:
Three repetitive sequences of northward youngIng, east striking, linear, volcano-sedimentary units are found in the late Archaean BeardmoreGeraldton greenstone belt, situated within the Wabigoon subprovince of the Superior Province of northwestern Ontario. The volcanic components are characterised by basaltic flows that are pillowed at the top and underlain by variably deformed massive flows which may In part be intrusive. Petrographic examination of the volcanic units indicates regional metamorphism up to greenschist facies (T=3250 C - 4500 C, P=2kbars) overprinted by a lower amphibolite facies thermal event (T=5750 C, P=2kbars) confined to the south-eastern portion of the belt. Chemical element results suggest olivine, plagioclase and pyroxene are the main fractionating mineral phases. Mobility studies on the varIOUS chemical elements indicate that K, Ca, Na and Sr are relatively mobile, while P, Zr, Ti, Fet (total iron = Fe203) and Mg are relatively immobile. Discriminant diagrams employing immobile element suggests that the majority of the samples are of oceanic affinity with a minor proportion displaying an island arc affinity. Such a transitional tectonic setting IS also refle.cted in REE data where two groups of volcanic samples are recognised. Oceanic tholeiites are LREE depleted with [La/Sm] N = 0.65 and a relatively flat HREE profile with [Sm/Yb] N = 1.2. Island arc type basalts (calc-alkaline) are LREE enriched, with a [La/Sm] N = 1.6, and a relatively higher fractionated HREE profile with [Sm/Yb] N = 1.9. Petrogenetic modelling performed on oceanIC tholeiites suggests derivation from a depleted spinel lherzolite source which undergoes 20% partial melting. Island arc type basalts can be derived by 10% partial melting of a hypothetical amphibolitised oceanic tholeiite source. The majority of the volcanic rocks in the Beardmore-Geraldton Belt are interpreted to represent fragments of oceanic crust trapped at a consuming plate margin. Subsequent post accretionary intrusion of gabbroic rocks (sensu lato) with calc-alkaline affinity is considered to result in the apparent hybrid tectonic setting recognized for the BGB.
Resumo:
Sedjrrlents deposited in the Late Quaternary marine sUbrnergences that follov'ted the deglaciation of Ontario} Quebec., and 6ritlst-1 Columbia often contaln an abundant nlarlne invertebrate macrofauna. The rnacrofauna~ dotYllnated by aragonitic pelecypods} is fully preserved In their original mineralogy and cherrlistry 8S deternl1ned by x-ray dlffractlon., scannlng electron tl-,lcroscoDY., trace and r1l1 nor elet11ent analyses and stable isotopes. Ttle trace elernent and stable isotope geochen-Ilstry of chernlcal1y unaltered aragorlitlc molluscs can be used to determine paleoter1-lperatures and paleosallnltles." HO\Never} corrections need to be tllade \fvtlen deterrTIlnlng oxygen-isotope paleotenlperi:ttures due to the lnfluence of isotopically 11gtlt glaciol rneltv-laters and reduced sal1nltles. Ttle eastern Laurentide Ice Sheet probably had an o:~ygen lS0tOP1C composition as low as -8e) 0/00 (Sr1[IW). In additl0fl} corrections need to be rnade to the carbonlsotope values, before salinity deterrnlnatlons are t11ade., due to the reJjuctlon of the terrestrial carbon bl0rnass during glac1al maxlrna. Using geochernlcal data frot11 537 marlne n-'8crolnvertebrates frorTI 72 localities in soutt-,easter Ontarl0 and southern Quebec, it tras been deterrnined that the Late Quaternary Char1lplaln Sea \N6S density stratified along salinity and temperatlJre gradients. The deep-\h/aters of tt-,e Charnplaln Sea tlad salinities that ranged frorn 31 to 36 ppt} and terrlperatures of 00 to 5°C. Conversely.. the st1alloy./-\f*later regirrle of ttle Ctlarnplaln Sea tlad sal1nltles that ranged fron-, 24 to 33 ppt} Y.tltt1 terrlperatures ranglng from 5° to 15°C. Tr,8 rrlajorl rnlnor1 and trace e1et1-,ent geochernlcal analysls of 155 marine lnvertebrates frorn 4 10C611t1es of tt-,e Late Quaternary Ft. Langley Forrnatlon and Capl1ano Sedlments;. souttl\Nestern Brltlsh Columblal suggest l t~lat the 'waters of the o-,arlne lnundation that fol1o....ved the retreating Cordl11eran Ice Sheet had sal1nltles ranglng frorn 32 to 3f. DPt.
Resumo:
Core samples of postglacial sediments and sediment surface samples from Shepherd Lake on the Bruce Peninsula, Harts Lake on the Canadian Shield, and two cores from Georgian Bay (core P-l in the western deep part and core P-7 in the eastern shallow part) have been analyzed for pH, grain size distribution, water content, bulk density, loss on ignition at 4500C and 11000 C, major oxides (Si02 ,A1203,!FeO,MgO,CaO, Na20,K20,Ti02 ,MnO and P205) and trace elements (Ba,Zr,Sr,y,S, Zn,Cu,Ni,Ce and Rb). The sediment in Georgian Bay are generally fine grained (fine silt to very fine silty clay) and the grain size decreases from the Canadian Shield (core p-7) towards the Bruce Peninsula (core P-l) along the assumed direction of sediment transport. This trend coincides with a decrease in sorting coefficient and an increase in roundness. Other physical characteristics, such as water content, bulk density and loss on ignition are positively correlated with the composition of sediments and their compaction, as well as with the energy of the depositional environment. Analyses of sediment surface samples from Shepherd Lake and Harts Lake indicate the influence of bedrock and surficial deposits in the watershed on pH condition that is also influenced by the organic matter content and probably I ! I man's activities. Organic matter content increases significantly in the surface sediment in these small lakes as a result of either natural eutrophication or anthropogenic organic loading. The extremely high organic matter content in Shepherd Lake sediment indicates rapid natural eutrophication in this closed basin and high biological productivity during postglacial time, probably due to high nutrient levels and shallow depth. The chemical composition of the Canadian Shield bedrock is positively correlated with the chemical characteristics of predominantly inorganic lake sediments that were derived from the Shield rocks by glacial abrasion and by postglacial weathering and erosion of both bedrock and surficial deposits. High correlation coefficients were found between organic matter in lake sediments and major oxides (Si02,AI203,.~FeO, MgO,CaO,K20 and MnO) , as well as some trace elements (Ba,Y, S,Zn,Cu,Ni and Rb). The chemical composition of sediments in Harts Lake and core P-7 in Georgian Bay on the Canadian Shield differs from the chemistry of sediments in Shepherd Lake and core P-l in Georgian Bay on the Bruce Peninsula. The difference between cores P-l and P-7 is indicated by values of Si02 , AI203 ,:LFeo,Mgo,CaO,Ba,Zr,Sr,y and S, and also by the organic matter content. This study indicates that the processes of sediment transport, depositional environment, weathering of the rocks and surficial deposits in the watershed, as well as chemical composition of source rocks all affect the chemical characteristics of lake sediments. The stratigraphic changes and variations in lake sediment chemistry with regard to major oxides, trace elements, and organic matter content are probably related to the history of glacial and postglacial lake stages of the Georgian Bay Region and, therefore, the geochemical data can make a useful contribution to a better understanding of the Late-Quaternary history of the Great Lakes.
Resumo:
A comprehensive elemental, isotopic and microstructural analyses was undertaken of brachiopod calcites from the Hamilton Group (Middle Devonian), Clinton Group (Middle Silurian) and Middle to Upper Ordovician strata of Ontario and New York State. The majority of specimens were microstructurally and chemically preserved in a pristine state, although a number of specimens show some degree of post-depositional alteration. Brachiopod calcites from the Hamilton and Clinton Groups were altered by marine derived waters whereas Trenton Group (Middle Ordovician) brachiopods altered in meteorically derived fluids. Analysis of the elemental and isotopic compositions of pristine Hamilton Group brachiopods indicates there are several chemical relationships inherent to brachiopod calcite. Taxonomic differentiation of Mg, Sr and Na contents was evident in three co-occuring species from the Hamilton Group. Mean Mg contents of pristine brachiopods were respectively Athyris spiriferoides (1309ppm), Mucrospirifer mucronatus (1035ppm) and Mediospirifer audacula (789ppm). Similarly, taxonomic differentiation of shell calcite compositions was observed in co-occuring brachiopods from the Clinton Group (Middle Silurian) and the Trenton Group (Middle Ordovician). The taxonomic control of elemental regulation into shell calcite is probably related to the slightly different physiological systems and secretory mechanisms. A relationship was observed in Hamilton Group species between the depth of respective brachiopod communities and their Mg, Sr and Na contents. These elements were depleted in the shell calcites of deeper brachiopods compared to their counterparts in shallower reaches. Apparently shell calcite elemental composition is related to environmental conditions of the depositional setting, which may have controlled the secretory regime, mineral morphology of shell calcite and precipitation rates of each species. Despite the change in Mg, Sr and Na contents between beds and formations in response to environmental conditions, the taxonomic differentiation of shell calcite composition is maintained. Thus, it may be possible to predict relative depth changes in paleoenvironmental reconstructions using brachiopod calcite. This relationship of brachiopod chemistry to depth was also tested within a transgressiveregressive (T-R) cycle in the Rochester Shale Formation (Middle Silurian). Decreasing Mg, Sr and Na contents were observed in the transition from the shallow carbonates of the Irondequoit Formation to the deeper shales of the lowest 2 m of Rochester Shale. However, no isotopic and elemental trends were observed within the entire T-R cycle which suggests that either the water conditions did not change significantly or that the cycle is illusory. A similar relationship was observed between the Fe and Mn chemistries of shell calcite and redox/paleo-oxygen conditions. Hamilton Group brachiopods analysed from deeper areas of the shelf are enriched in Mn and Fe relative to those from shallow zones. The presence of black shales and dysaerobic faunas, during deposition of the Hamilton Group, suggests that the waters of the northern Appalachian Basin were stratified. The deeper brachiopods were marginally positioned above an oxycline and their shell calcites reflect periodic incursions of oxygen depleted water. Furthermore, analysis of Dalmanella from the black shales of the Collingwood Shale (Upper Ordovician) in comparison to those from the carbonates of the Verulam Formation (Middle Ordovician) confirm the relationship of Fe and Mn contents to periodic but not permanent incursions of low oxygen waters. The isotopic compositions of brachiopod calcite found in Hamilton Group (813C; +2.5% 0 to +5.5% 0; 8180 -2.50/00 to -4.00/00) and Clinton Group (813C; +4.00/00 to +6.0; 8180; -1.8% 0 to -3.60/ 00) are heavier than previously reported. Uncorrected paleotemperatures (assuming normal salinity, 0% 0 SMOW and no fractionation effects) derived from these isotopic values suggest that the Clinton sea temperature (Middle Silurian) ranged from 18°C to 28°C and Hamilton seas (Middle Devonian) ranged between 24°C and 29°C. In addition, the isotopic variation of brachiopod shell calcite is significant and is related to environmental conditions. Within a single time-correlative shell bed (the Demissa Bed; Hamilton Group) a positive isotopic shift of 2-2.5% 0 in 013C compositions and a positive shift of 1.0-1.50/00 in 0180 composition of shell calcite is observed, corresponding with a deepening of brachiopod habitats toward the axis of the Appalachian Basin. Moroever, a faunal succession from deeper Ambocoelia dominated brachiopod association to a shallow Tropidoleptus dominated assocation is reflected by isotopic shifts of 1.0-1.50/00. Although, other studies have emphasized the significance of ±20/oo shifts in brachiopod isotopic compositions, the recognition of isotopic variability in brachiopod calcite within single beds and within depositional settings such as the Appalachian Basin has important implications for the interpretation of secular isotopic trends. A significant proportion of the variation observed isotopic distribution during the Paleozoic is related to environmental conditions within the depositional setting.
Resumo:
Owing to the fact that low-Mg calcite fossil shells are so important in paleoceanographic research, 249 brachiopod, cement and matrix specimens from two neighboring localities (Jemez Springs and Battleship Rock), of the Upper Pennsylvanian Madera Formation were analyzed. Of which, about 86% of the Madera brachiopods are preserved in their pristine mineralogy, microstructure and geochemistry. Cement and matrix samples, in contrast, have been subjected to complete but variable post-deposition~1 alteration. It is confirmed that the stable isotope data of brachiopods are much better than that of matrix material in defining depositional parameters. Because there is no uniform or constant relationship between the two data bases (e.g., from 0.1 to 3.0%0 for 0180 and from 0.2 to 6.7%0 for 013C in this study), it is not possible to make corrections for the matrix data. Regarding the two stratigraphic sections, elemental and petrographic analyses suggest that Jemez Springs is closer to Penasco Uplift than Battleship Rock. Seawater at Jemez Springs is more aerobic, and the water chemistry is more influenced by continental sources than that at Battleship Rock. In addition, there is a relatively stronger dolomitization in the mid-section of the Battleship Rock. Results further suggest that no significant biogenic fractionation or vital effects occurred during their shell secretion, suggesting that the Madera brachiopods incorporated oxygen and carbon isotopes in equilibrium with the ambient seawater. This conclusion is not only drawn from the temporal and spatial analyses, but also supported by brachiopod inter-generic comparison (Composita and Neospirifer) and statistical analysis ( t-test).
Resumo:
The Middle Ordovician Sunblood Formation in the South Nahanni River area, District of Mackenzie, comprises mainly limestones and dolostones of intertidal and shallow subtidal origin as indicated by the presence of desiccation polygons, fenestral fabric, and oncolites. The study of well preserved, silicified trilobites from low diversity, Bathyurus-dominated, Nearshore Biofacies faunas of Whiterockian and Chazyan age collected in six stratigraphic sections through the Sunblood Formation permits the recognition of three new Whiterockian zones, and two previously established Chazyan zones. The Bathyurus mackenziensis, Bathyurus sunbloodensis, and Bathyurus margareti zones (Whiterockian), together with the Bathyurus nevadensis and Bathyurus granu/osus zones (Chazyan) represent the Nearshore Biofacies components of a dual biostratigraphic scheme that considers both temporal and spatial distribution patterns, and are compositionally distinct from faunas in correlative strata around North America that represent other biofacies. Twenty-six species belonging to eighteen genera are described and illustrated. Ludvigsenella ellipsepyga is established as a new bathyurine genus, in addition to four new species of Bathyurus : Bathyurus mackenziensis, Bathyurus sunbloodensis, Bathyurus margareti and Bathyurus acanthopyga. Other genera present are: Basilicus, Isote/us, ///aenus, Bumastoides, Fail/eana, Phorocepha/a,Ceraurinella, Acanthoparypha, Xystocrania, Cydonocephalus, Ectenonotus, Pseudomera, Encrinuroides, Calyptaulax, Amphilichas and Hemiarges.
Resumo:
North Amerlc8 W8S inundated by fJ major eplcontlnental sea during ihe C:retaceo.us Period. The sOljihw6rd transgression of th.e northern Boreal See along the ~\festern Interior Seaway resulted in a meetlng with the northward edv6nclng waters from the GUlf of Mexico (Obradovich and Cobban, 1975). Th1s link was 1n eXlstence by late Albien time and 6llowed for the comm1ngl1ng of the prol1ferous Arctic and Gulf rnar1ne faunas (F1g. 1). By early Campanlan time, there was a widening of B6ffln Bay wlth a slrnult8neous subsidence 1n the Arct1c Archlpelago and Sverdrup 6as1n (W11liam and Stelck, 1975). Williams and Burk (1964) found 6 break 1n the marines sedlmentatlon in the f1anltoba area, suggesting Bland corlnectlon from the Dlstrlct of Keewatln through eastern M6fl1toba to the lake Sl~perlor reglon, lmplying that the only dlrect connection between the Interlor Sea with Baffln Bay, was yia the Arct1c. This hiatus was also documented by Meek and Hayden (1861) ln the United states between the Niobrara and Pierre Format1ons. Jeletzky (1971) suggested that the retreat of the sea towards the east was by a serles of strong pulses resultlng in the regression of the Campanlan and M66str1chtlan seas. During ttle Cretaceous1 the r1s1ng Corl1111era caused the western shoreline of the Interlor Sea to migrate eastwards and the Cordillera'l detritus produced deltaic cornplexes from the Mackenzie Valley to Ne\N Mexlcoo The foreland basin was continually subslding and thls down\",arplng aided in the eastward m1gration of the western shorel1ne. Thls also lndicates that trle water 'tIes becom1ng deeper in the central Plains sect10n of the Seaway (Fig. 2).
Resumo:
Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Preexisting fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales.
Resumo:
In the Elliot lake region of northern Ontario, Yolcanlc lava piles represent the lowermost units of the Huronian SUpergroup. These rocks general1y trend east-west and belong to the Elliot lake Group. They are s1tuated on the north and south limbs or the QuIrke lake Syncline. The volcanIc rocks of this study contain a secondary minerai assemblage consisting of actinolite, biotite, chlorIte, eptdote/cllnozoislte tttanomagnettte and calcite characteristic of greenschist metamorphism. Compilation of data suggests that metamorphism of the volcanic rocks proceeded between 325- and 425-C and between 2.4 and 4.7 kb. Geochemtcally these lavas represent tholeiitic and calc-alkaline assemblages. The tholeiites are character1sttcally enriched tn Fe and Tt and consist mainly of basalts, basaltic andesites and andesites. These rocks are believed to have formed by the partIal melting of a peridottte source at low P-T. In contrast, the calc-alkaline rocks are depleted in Fe and TI, but show a signIficant enrichment In 51 and Zr; andesIte Is the major rock type for thIs assemblage. I·t Is postUlated that the calc-alkalIne sU1te of rocks was the result of eIther the partIal meltIng of abasaltic·magma at shallow depth, or the melttng of s1al1c crustal materIal due to the added we1ght of tholeiitIc material on an unstable crust and to downwarplng processes Inttlated by convection cells.
Resumo:
Since the first offshore Lake Erie well was drilled in 1941, the Grimsby and Thorold formations of the Cataract Group have been economically important to the oil and gas industry of Ontario. The Cataract Group provides a significant amount of Ontario's gas production primarily from wells located on Lake Erie. The Grimsby - Thorold formations are the result of nearshore estuarine processes influenced by tides on a prograding shelf and are composed of subtidal channel complexes, discrete tidal channels, mud flats and non-marine deposits. Deposition was related to a regressive - transgressive cycle associated with eustatic sea level changes caused by the melting and resurgence of continental glaciation centred in Africa in the Late Ordovician/Early Silurian. Grimsby deposition began during a regression with the deposition of subtidal channel complexes incised into the marine deposits of the Cabot Head Formation. The presence of mud drapes and mud couplets suggest that these deposits were influenced by tides. These deposits dominate the lower half of the Grimsby. Deposition continued with a change from these subtidal channel complexes to laterally migrating, discrete, shallow tidal channels and mud flats. These were in turn overlain by the non-marine deposits of the Thorold Formation. Grimsby - Thorold deposition ended with a major transgression replacing siliciclastic deposition with primarily carbonate deposition. Sediment was sourced from the east and southeast and associated with a continuation of the Taconic Orogeny into the Early Silurian. The fluvial head of the estuary prograded from a shoreline that was located in western New York and western Pennsylvania running NNE-SSW and then turning NW-SE and paralleling the present day Lake Erie shoreline. iii The facies attributed to the Grimsby - Thorold formations can be ascribed to the three zones within the tripartite zonation suggested by Dalrymple et ale (1992) for estuaries, that is, a marine-dominated facies, a mixed energy facies, and a facies that is dominated by fluvial processes. Also, sediments within the Grimsby - Thorold are commonly fining upwards sequences which are common in estuarine settings whereas deltaic deposits are normally composed of coarsening upwards sequences in a vertical wedge shape with coarser material near the head. The only coarsening observed was in the Thorold Formation and attributed to non-marine deposition by palynological evidence. The presence of a lag deposit at the base of the sediments of the Grimsby Thorold formations suggests that they were incised into the Cabot Head Formation. Further, the thickness of Early Silurian sediments located between the top of the Queenston Formation, where Early Silurian sedimentation began, to the top of the Reynales - Irondequoit formation are constant whether the Grimsby - Thorold formations are present or not. Also, cross-sections using a sand body located in the Cabot Head Formation for correlation further imply that the Grimsby Formation has been incised into the previous deposits of the Cabot Head.
Resumo:
The lower Silurian Whirlpool Sandstone is composed of two main units: a fluvial unit and an estuarine to transitional marine unit. The lowermost unit is made up of sandy braided fluvial deposits, in shallow valleys, that flowed towards the northwest. The fluvial channels are largely filled by cross-bedded, well sorted, quartzose sands, with little ripple crosslaminated or overbank shales. Erosionally overlying this lower unit are brackish water to marine deposits. In the east, this unit consists of estuarine channels and tidal flat deposits. The channels consist of fluvial sands at the base, changing upwards into brackish and tidally influenced channelized sandstones and shales. The estuarine channels flowed to the southwest. Westwards, the unit contains backbarrier facies with extensive washover deposits. Separating the backbarrier facies from shoreface sandstone facies to the west, are barrier island sands represented by barrier-foreshore facies. The barrier islands are dissected by tidal inlets characterized by fining upward abandonment sequences. Inlet deposits are also present west of the barrier island, abandoned by transgression on the shoreface. The sandy marine deposits are replaced to the west by carbonates of the Manitoulin Limestone. During the latest Ordovician, a hiatus in crustal loading during the Taconic Orogeny led to erosional offloading and crustal rebound, the eroded material distributed towards the west, northwest and north as the terrestrial deposits of the fluvial Whirlpool. The "anti-peripheral bulge" of the rebound interfered with the peripheral bulge of the Michigan Basin, nulling the Algonquin Arch, and allowing the detritus of the fluvial Whirlpool to spread onto the Algonquin Arch. The Taconic Orogeny resumed in the earliest Silurian with crustal loading to the south and southeast, and causing tilting of the surface slope in subsurface Lake Erie towards the ii southwest. Lowstand terrestrial deposits were scoured into the new slope. The new crustal loading also reactivated the peripheral bulge of the Appalachian Basin, allowing it to interact with the bulge of the Michigan Basin, raising the Algonquin Arch. The crustal loading depressed the Appalachian basin and allowed transgression to occur. The renewed Algonquin Arch allowed the early Silurian transgression to proceed up two slopes, one to the east and one to the west. The transgression to the east entered the lowstand valleys and created the estuarine Whirlpool. The rising arch caused progradation of the Manitoulin carbonates upon shoreface facies of the Whirlpool Sandstone and upon offshore facies of the Cabot Head Formation. Further crustal loading caused basin subsidence and rapid transgression, abandoning the Whirlpool estuary in an offshore setting.
Resumo:
One of the main objectives of the mid-Atlantic transect is to improve dating resolution of sequences and unconfonnity surfaces. Dinoflagellate cysts from two Ocean Drilling Program boreholes, the onshore Leg 174AX Ocean View Site and Leg 174A continental shelf Site 1071, are used to provide age estimates for sequences and unconfonnities fonned on the New Jersey continental margin during the Miocene epoch. Despite the occasional lack of dinocysts in barren and oxidized sections, dinocyst biochronology still offers greater age control than that provided by other microfossils in marginal marine environments. An early Miocene to late Miocene chronology based on ages detennined for the two study sites is presented. In addition, .palynofacies are used to unravel the systems tract character of the Miocene sequences and provide insight into the effects of taphonomy and preservation of palynomorphs in marginal marine and shelf environments under different ~ea level conditions. More precise placement of maximum flooding surfaces is possible through the identification of condensed sections and palynofacies shifts can also reveal subaerially exposed sections and surfaces not apparent in seismic or lithological analyses. The problems with the application of the pollen record in the interpretation of Miocene climate are also discussed. Palynomorphs provide evidence for a second-order lowering of sea level during the Miocene, onto which higher order sea level fluctuations are super-imposed. Correlation of sequences and unconfonnities is attempted between onshore boreholes and from the onshore Ocean View borehole to offshore Site 1071.
Resumo:
Estudi de l’estratigrafia de la Cova de l’Arbreda, situada a Serinyà, a la comarca del Pla de l’Estany (Girona). Se centre en el reompliment que hi va haver al llarg del Paleolític Superior, en què s’observa un canvi a cop d’ull què, situat sobre els nivells solutrians, s’havia atribuït al pas vers el postglacial
Resumo:
This study makes clear the existence of a paleogenical red basal level (Pontils Fm.) in the Vilablareix àrea, under the mio-pliocenical cover of the Girona plain, enlargening the surface known go far of that level
Resumo:
The Bac Grillera nappe (Prepirenean of Girona) shows a stratigraphic section composed of two unconformi ty-bounded units. The lower unit is composed by rethian (marly limestones) and liassic (brechoid marly limestones and limestones). The upper unit (sandstones and marly limestones) belongs to the upper Cretaceous (Campanian)