985 resultados para Genetic transformation
Resumo:
利用发根农杆菌(Agrobacterium rhizogenes)1601,1000,1500,15834,A4,均成功地转化了中药青蒿(Artemisia annua L.)并且建立了pRi1601,pRi15834,pRiA4诱导的发根培养。pRi1601,pRi15834的发根诱导率比其它质粒高。太老或太幼的叶片不利子发根的诱导;发根主要从叶脉的伤口处萌发;带顶芽或带侧芽的叶片容易诱导根,但不一定是发根。光照有利于发根的诱导和发根的生长。以每个发根的“绝对生长速率”(Gtowth Ratio,GR)和绝对“侧根”数量(Number of Side Roots,NSR),通过大量的发根系的筛选,建立了8个发根系,1601-L-1, 1601-L-2, 1601-L-3, 1601-L-4, 15834-L-1, 1601-P-I, 16 01-P-2,15834-L-2。Southern分子检测表明,160l-1-1,1801-L-2, 1601-L-3,1601-L-4,1601-P-1,1601-P-2均为转化子。8个建立的发根系之间无论生长或者QHS的合成存在明显的差异。比较光/暗(16/8hrs),25℃条件下培养的16 01-L-1,1601-L-2,1601-L-3,1601-L-4,1601-P-l,和1601-P-2,其中16 01-L-3的生长最快,160l-L-1的生长最慢;但是,1601-L-1的QHS的含量最高(可达1. 048%),1601-1-3的QHS的含量最低。160Z-L-3,15834 -L-1和2583:1-L-2的生长速率相差不大。用盛有l000mLMS液体培养基的3000mL的锥形瓶扩大培养1601-L -3,15834-L-1和15834-L-2,转速为ll0rlpm,培养过程中发根容易形成发根球(Hairy Root Balis,HRB),HRB的形成严重影响发根的生长和QHs的合成,HpLC分析表明扩大培养发根中QHS的含量比较低。 改变MS基本培养基中的无机离子的浓度,研究不同无机离子对发根生长和QHS的合成的影响。 l、KN03为18.79×10-3M时有利于1601- L-1生长,为14. 84×10-3M时有利于QHS的合成。NH-4N0-3浓度在10.93-12. 49×10—3M范围内有利于1601-L-1生长,在0-20.62×10-3M范围内对QHS的合成影响不大,大于20. 62×lO-3M不利QHS的合成。培养基中NH-4+/N0-3-比值为0. 37-0. 4-0.52:1时有利于发根的生长,比值为0.52 - 0.58:1时有利于QHS的合成。 2、H-2P0-4-浓度为2.498×10-3M时有利于发根的生长在0-2. 498×l0-3M范围内,随着浓度的提高,促进发根的生长。培养基中的H2P4 -的浓度在0-1.249×lO-3M的范围内,随着浓度的提高,促进QHS的合成,为1.249×10-3M时QHS的含量最高。 3、培养基中最适16 01-L-1生长的Ca-2+浓度为0.198- 0.766×10-3M,大于或小于该浓度范围,显著地抑制发根的生长。但是,在0-3.695×10-3M范围内,随着培养基中Ca-2+浓度提高,促进QHS的合成,最适Ca-2+浓度为3.695×l0-3M。 4、培养基中不加Mg-2+时,完全抑制发根生长,在0. 142×10-3M-7.506×l0-3M浓度范围内,对发根生长影响没有明显的差别。但是,HPLC和UV分析发根中QHS含量,培养基中不加Mg-2+时,发根中QHS含量最高。 5、培养基中的Fe-2+浓度在0. 25 -1.0×10-3M范围内,同时有利于16 01- L-1的生长和QHS的形成。 6、培养基中最适合予16 01- L-3生长的KI浓度为2.5ppm,大于或小予该浓度均显著地抑制发根的生长,培养基中加入KI明显地降低发根中的QHS的含量。 7、H2BO3对l601-L-l生长影响不大,HPLC分析QHS的含量,培养基中的H3BO3浓度为100ppm和400ppm,QHS的含量分别为1.69mg/g和1.80mg/g(DW)。 8、Cu-2+对1601-L-3的生长影响显著,最适合1601-L-3生长的Cu-2+浓度为1.00ppm,在0 -1.00ppm的浓度范围内,随着培养基中的Cu+浓度的提高,发根的生物量不断增加。培养基中QHS合成的最适Cu2+浓度为0.05ppm,大于或小于该浓度均显著地抑制发根中QHS的合成。 比较光培养和暗培养对发根生长的影响,结果表明光照明显地促进1601-L-l的生长,暗培养明显不利于发根的生长。最适合于发根生长的温度为25℃,大于35℃显著地抑制发根的生长,影响发根的根尖细胞的正常分裂。 改变培养基中的蔗糖浓度和在发根培养的不同时期给培养基中添加蔗糖,试验结果表明蔗糖作为碳源对1601-L-3和1601-L-1的生长具有显著的影响。 (1)培养基中缺少蔗糖显著地抑制发根的生长。 (2)发根培养的前5天时间内,蔗糖浓度为30- 60glL昀培养基最有利于发根的生长,50glL的培养基中的发根生长最快,培养基中的蔗糖浓度大于60g/L小于30g/L时,发根的生物量增加较少。 (3)发根培养至第15天时,蔗糖浓度为60g/L的培养基最有利予发根的生物量的增加。发根培养至30天时,蔗糖浓度为60-90g/L的培养基,发根的生物量的增加相差不大,但是为蔗糖浓度为30-40g/L的培养基中的发根生物量一倍。 (4)发根培养过程中,分别于第5和15天给蔗糖浓度为30g/L的培养基中添加一次或二次蔗糖,使培养基中的蔗糖终浓度相当于60g/L或90g/L,培养至30天时,添加蔗糖的培养基中的发根的干重生物量相当于不添加蔗糖培养基中的发根生物量一倍,相当于初始蔗糖浓度为60g/L和90g/L培养基中发根的生物量。 (5)随着培养基中蔗糖浓度的提高,发根干重/鲜重比显著增加。培养基中的蔗糖的消耗量与发根生物量的增加呈正相关,蔗糖消耗越多,发根生物量的增加越大。 比较pH值对发根生长和QHS合成的影响表明,灭菌前pH值在5.O-6.5范围内的培养基适合予1601-L-1的生长,小于5.O不利于发根的生长,pH5.8有利于1601-1-1生长和QHS的生物合成。发根收获时培养基中的pH值一般为4.5-5.2. pH7.O抑制发根的生长,pHl0.O对发根具有强烈的致死作用。发根在培养过程中,对培养基中的pH值具有显著的调节作用,发根能在很短的时间内(24- 48hrs)使pl:l值为5.8、6.4、7.0培养基降低到pH4. 5-5.2,pH为5.8的培养基有利于QHS合成。 比较不同基本培养基对发根生长和QHS合成的影响,试验结果表明N6、DCR、Litvay培养基有利于1601-L-1的生长,WS、White、B5培养基不利于发根的生长。DCR培养基中的QHS含量最高。 根据三水平试验选用三水平正交表来安排试验的原则,选用三水平正交表L7(3-),研究多因子效应对发根生长和QHS合成的影响,试验结果表明,Mg2+,Fe2+,Mn-2+,NH4NO3,KN03 ,KI,Ca-2+为发根生长的主要因子,NH4N03,KNOs,Mg2+,Ca2+,肌醇为QHS合成的主要因子。 通过TLC分析发根中QHS和其它化学成分,同时比较发根和无菌苗及野生植株的化学成分,发根和无菌苗均能合成包括QHS在内的野生青蒿叶片中的大部分非挥发性的化台 物。 研究青蒿植株在发育过程中QHS的含量的变化以及发根、无菌苗和野生青蒿中QHS的合成,HP分析结果表明,l、不同的单株青蒿之间的QHS量相差很大。2、同一植株幼 叶的QHS含量比老叶的QHS含量高。3、不同单株青蒿之间达到最高QHS含量的时间不一样,开花期或开花之前。4、无菌苗(带根)或者不带根丛生芽均能合成QHS,但是带根的无菌蕾的QHS量比丛生芽中的QIS的含量高。5、不同发根农杆菌转化的发根系1601-L-1和15834-L-1都能合成QHS。
Resumo:
本论文由三部分内容组成,一、药用青蒿的遗传转化,即根癌农杆菌和发 根农杆菌介导的转化系统的建立及其影响参数的研究。二、青蒿素生物合成的 分子调控。三、倍半萜生物合成相关基因的克隆。 一、药用青蒿的遗传转化。建立了Ri质粒介导和Ti质粒介导的两种转基因系统, 其中Ri质粒介导青蒿转基因系统的建立是国际上首次报道;以GFP基因为报 告基因,首次获得高效表达的青蒿转绿色荧光蛋白基因的丛生芽,并对GFP基 因的表达进行了组织和细胞水平的定位。此外,对影响两种转基因系统的主要 参数进行了较为详细的研究。上述研究为青蒿素生物合成的分子调控奠定了坚 实的基础。 二、青蒿素生物合成的分子调控。为探索提高青蒿植株或组织和器官中的青蒿 素含量,首次以棉花中克隆的杜松烯合成酶和法呢基焦磷酸合成酶的 cDNA 为 目的基因导入青蒿,对青蒿中青蒿素的生物合成进行了分子调控研究的尝试。 通过已建立的两种转基因系统,将从棉花中克隆的杜松烯合成酶和法呢基焦磷 酸合成酶的 cDNA 导入青蒿,获得转基因发根和转基因植株。结果表明,外源 基因的表达能够影响青蒿素的生物合成,其中法呢基焦磷酸合成酶基因的过量 表达能够促进青蒿素的生物合成,提高转基因发根和植株中的青蒿素的含量。 转基因发根F-26系中青蒿素含量最高达3.01 mg/g.DW,与对照相比青蒿素含量 提高3~4倍;转基因植株的青蒿素含量最高达10.08 mg/g.DW,与对照相比, 转基因植株的青蒿素产物提高2~3倍。此外,研究还表明,在转基因的发根C -37株系中,外源杜松烯合成酶基因的导入和表达可能相应地促进青蒿转基因 发根自身的法昵基焦磷酸基因的表达。 三、倍半萜生物合成相关基因的克隆。采用 RT-PCR 技术,从马铃薯 (Solanum tuberosum L.) 幼叶中克隆了 HMGRII 亚基因家族的一个新的成员 HMGR-c2(GenBank accession No.AF 096838Southem);杂交分析表明,该基因至少以 两个拷贝以上形式存在于马铃薯基因组中;RT-PCR分析表明,HMGR -c2的 表达在幼苗期无组织特异性,广泛地存在于根、茎、叶等组织中。以青蒿001 株系的苗期叶片为材料,构建了青蒿苗期的λgtll cDNA文库,以PCR筛库方 法从青蒿中克隆一个法呢基焦磷酸合成酶cDNA (Artfps2 GenBank accession No. AF136602)和一个HMGR cDNA(GenBank accession No.AF142473);以青蒿 025株系的苗期叶片为材料,构建了青蒿苗期部分质粒文库以 PCR 筛库方法从 青蒿中克隆一个法昵基焦磷酸合成酶 cDNA (Artfpsl GenBank accession No.AF112881);此外,还从青蒿中克隆了倍半萜合成酶的 cDNA 片段(GenBank accession No.AF156854)。其中青蒿倍半萜合成酶基因的克隆是目前国际上本研 究领域最受关注的焦点和难点之一。至此,本研究已将与青蒿素生物合成相关 的三个重要的关键酶基因基本克隆,这无疑将加速青蒿素生物合成的基础和应 用研究的进程。
Resumo:
本研究在前人研究工作的基础上,以小麦转化系统的建立和完善为前提,将BADH基因导入小麦,获得外源BADH基因表达的小麦转基因植株。 (1)小麦不同基因型、不同外植体和不同器官对PPT或bialaphos选择的反应不同,两种试剂对小麦转化体的选择具有同样效果。轰击后的受体材料经过2-3天的恢复生长且植株分化时不用PPT选择可以提高转化效率。冀885-443和石90-4185两个品种对PPT敏感程度适中,具有较强的植株再生能力,得到的转基因植株数和转基因频率均较高。 (2)用pAHC25质粒转化冀885-443等小麦品种取得成功,获得转基因植株12株,平均转基因频率为0.4%。Southern杂交结果表明bar基因已经整合到小麦基因组中。根据研究结果认为,过快过高地提高PPT浓度是造成转基因频率低的主要原因。 (3)采用基因枪法成功地将山菠菜BADH基因(pABH9)导入到冀885-443等品种中。PCR检测和Southern杂交分析证实获得26株转基因植株,不同品种转化频率介于0.3-2.7%,外源BADH基因在转基因植株的叶片内表达。在胁迫条件下有15株转基因植株的BADH酶活力单位明显超过亲本;有6株的相对电导率显著比亲本低,说明这些植株在胁迫条件下细胞受到损伤比亲本低。 (4)采用花粉管通道法向小麦转化pAHC25,筛选出62株抗PPT,转化频率为3.97%。采用农杆菌介导转化冀885-443的成熟胚和幼胚愈伤组织,在转化愈伤组织中观察到gus基因的表达,也得到抗G418的愈伤组织,但没能得到再生植株。
Resumo:
青蒿素是从中国传统药用植物青蒿(Artemisia annua L.)中提取的新型抗疟特效药。青蒿素在国际市场上供不应求,而青蒿植株中青蒿素的含量很低,因此如何提高青蒿素的产量成为近年来研究的热点。通过基因工程获得转基因青蒿高产株系是提高青蒿素产量的最有潜力的途径之一。 对不同基因型青蒿进行不同的激素浓度配比的比较研究,得到丛生芽诱导率较高、生根诱导率较高的激素配比,从而建立了青蒿高效再生体系。然后系统地分析了青蒿丛生芽诱导、丛生芽生长、丛生芽生根诱导对Kan的敏感性。对影响根癌农杆菌介导青蒿转化的转化效率的两个主要因素,即农杆菌类型和青蒿基因型,以及其它影响因素,即预培养时间、侵染液的组成、共培养的方式和时间进行比较研究,建立了根癌农杆菌介导的青蒿高效转化体系。本高效转化和再生体系的转基因植株的得率为4%至10%,而且转基因植株再生周期短,再生能力强。 通过基因工程,在青蒿高产株系中过量表达本实验室从青蒿中克隆的FPS基因,结果转基因青蒿中FPS的酶活性是非转基因青蒿的2-3倍;转基因青蒿的青蒿素含量最高可达0.9%(DW),是非转基因青蒿中青蒿素含量的1.34倍。这些结果进一步论证了FPS在青蒿素生物合成代谢中的调控作用。
Resumo:
药蒲公英(Taraxacum officinale Weber)是菊科蒲公英属的模式种,主要分布于欧洲和北美,在我国新疆也有少量分布。与Taraxacum mongolicum Hand-Mazz(我国中药市场的主流种和主要自然分布种)相比,药蒲公英的生物量更大,作为营养保健蔬菜具有更大的市场价值。药蒲公英的组织培养工作是开展基础研究的有力工具,本工作中,药蒲公英叶片外植体在含0.2mg/L IAA和1.0mg/L TDZ的MS培养基中培养2周后便产生大量的丛生芽,在含有0.5mg/L 2,4-D和2mg/L6-BA的MS培养基中培养30天后,形成明显的愈伤组织,愈伤组织块在含1.0mg/L 6-BA的MS培养基中成功再生。 体细胞无性系变异是植物愈伤组织培养中的普遍现象,我们将继代6次的愈伤组织接种于含盐培养基,得到了能够耐受1.0%NaCl的细胞系。耐盐细胞系在含盐培养基中的相对生长率和细胞活力明显高于对照(非耐盐细胞系接种于含盐培养基),由耐盐细胞系在含盐培养基中获得再生植株的工作正在进行。 直接不定芽再生途径对遗传物质具有高度保真性,是遗传转化的理想体系。我们利用此再生系统,将来源于耐盐植物山菠菜(Atriplex hortensis L.)BADH基因通过农杆菌介导的叶盘转化法导入药蒲公英,获得了PCR检测成阳性的转基因植株5株,从而建立了药蒲公英的转化体系。转基因植株的其他分子检测和耐盐性鉴定工作正在进行。
Resumo:
作为模式植物,水稻和拟南芥对于禾本科植物的研究都有其不足,二穗短柄草(Brachypodiumdistachyon)有望成为它们良好的补充。它具有作为一种模式植物所应该具有的各项优点,并且它与温带禾本科植物的亲缘关系比水稻更近。建立其良好转化体系是其成功应用的一环。本论文第一章以建立其农杆菌转化体系为目的,成功的诱导了其胚性愈伤组织,获得了潮霉素抗性愈伤,发现乙酰丁香酮浓度与转化效率的关系,并证明Silwet L-77对提高其转化效率有明显的作用,为进一步完善其转化体系打下了基础。 VER2是由本实验室发现的小麦春化相关基因,并己证明它可能参与春化过程中O-CJlcNAc介导的信号传导。本论文第二章研究了将VER2在水稻中过表达所引起的表型,发现VER2与光有类似的抑制根生长的作用,并且能够互相影响对方的表型,说明二者在水稻内调控根生长的信号途径既有共同的作用,但是又相互制约。进一步的研究有可能会找到水稻根内IAA响应的重要因子。 在第三章中,根据芯片数据克隆了水稻的十个可能与赤霉素、茉莉酸和减数分裂相关的上下调基因,并对其中四个利用过表达和RNAi技术进行了水稻转化,以研究它们在水稻中的功能。其中一个基因过表达的表型与赤霉素缺陷造成矮化和叶色深绿两个特征一致,而RNAi导致植株高度增加、叶色黄绿。而该基因受赤霉素诱导上调的程度在三个芯片杂交结果中最大(log2=2.3275)这一点也为其功能提供了很好的提示,即可能参与了赤霉素信号途径。
Resumo:
新疆雪莲(Saussurea involucrata Kar. et Kir.)是我国名贵中药材,其主要药用活性成分为黄酮类化合物。目前人们对新疆雪莲及它的黄酮类化合物的需求日益增多,但雪莲的人工栽培技术尚未成熟,在野生状态下,新疆雪莲只能生长在海拔4,000到5,000米的雪山上,现在由于过度采挖已濒临灭绝。为解决雪莲资源匮乏,提高雪莲中黄酮类成分的含量,本研究通过基因工程手段利用发根农杆菌将黄酮代谢途径中的关键酶-查尔酮异构酶(CHI)基因导入新疆雪莲,产生转基因新疆雪莲毛状根及再生苗,以期提高新疆雪莲的黄酮类物质含量,进行新疆雪莲黄酮类物质的生产。主要结果如下: 1.对克隆到的水母雪莲查尔酮异构酶基因(Smchi)进行功能分析。转Smchi正义、反义烟草的CHI酶活性实验结果表明,转Smchi正义的烟草CHI酶活性比对照提高3-6倍,而转反义Smchi基因的烟草CHI酶活性比对照则显著降低。分析不同株系的转基因烟草和对照烟草的黄酮含量和花色素含量表明,转Smchi正义的烟草积累比对照显著增高水平的总黄酮,其中株系CS-5黄酮含量是对照的6倍,转Smchi反义的烟草则积累较低水平的总黄酮,而且转基因烟草的总黄酮含量与Smchi基因的表达水平和CHI酶活性成正相关。但不论转Smchi基因正义或反义方向的烟草,其花色素含量和对照相比均没有发生显著变化。进一步对转基因烟草的黄酮成分进行分析,发现烟草中的主要黄酮成分芦丁在转Smchi正义烟草中有很高的积累。 2.发根农杆菌介导法将Smchi基因导入新疆雪莲,得到转Smchi基因的新疆雪莲毛状根。实验发现,35S-chi转基因对毛状根的生长没有显著影响,但35S-chi转基因毛状根能够合成显著提高水平的芹菜素和总黄酮,其中根系C46经过35 d培养,能产生32.1 mg/L的芹菜素和647.8 mg/L的总黄酮,分别是对照根系的12倍和4倍;不同根系的Smchi基因表达水平、CHI酶活性和芹菜素含量成正相关。本研究为通过基因工程手段提高新疆雪莲毛状根芹菜素和总黄酮含量提供了一个有效方法。 3.在1/2MS附加GA1.5 mg/L的培养基上,新疆雪莲毛状根的不定芽再生频率高且不定芽生长健壮。再生苗在MS+BA1.0 mg/L+NAA0.1 mg/L的培养基上继代培养生长量较大,经过20 d的培养,35S-chi转基因新疆雪莲再生苗株系(C17、C27、C46)、对照再生苗(Control-1)和正常试管苗(Control-2)之间生长量差异不显著,增殖倍数都在7倍左右;实验还发现,毛状根再生苗比各自来源的毛状根的芹菜素和总黄酮含量下降了20-30%,但转基因再生苗的芹菜素和总黄酮含量比Control-1和Control-2都有显著提高,其中C46芹菜素和总黄酮含量分别为1.86 mg/g 干重和37.3 mg/g干重,分别是Control-1的12倍和 2.4 倍,Control-2的4 倍和1.6倍。这些结果表明由毛状根诱导出的再生苗可作为增强目标次生代谢产物生产的另外一个有效来源。
Resumo:
青蒿素是从中药青蒿中提取的新型抗疟药物,然而,青蒿素在青蒿中的含量非常低。近年来,随着青蒿素生物合成途径相关酶基因的克隆,基因工程成为提高青蒿素含量的有效途径之一。在对青蒿进行遗传转化过程中,高效稳定的丛生芽诱导体系是青蒿转化成功的关键。然而,随着继代次数的增多,青蒿丛生芽诱导能力存在退化现象。本文首先研究了滤纸对青蒿丛生芽诱导的影响和在遗传转化中的应用,进而研究了反义鲨烯合酶基因表达对青蒿素生物合成的影响。主要结果如下: 研究了在丛生芽诱导培养基上加铺滤纸对青蒿丛生芽诱导的影响,结果发现,加铺滤纸后青蒿丛生芽诱导率显著提高,丛生芽诱导率能够达到97%左右。在此高效丛生芽诱导体系的基础上,我们进一步探讨了滤纸在青蒿遗传转化中的应用。结果表明,在筛选培养基上加铺一层滤纸,青蒿的抗性丛生芽诱导率能够达到59.7%,其中在12.5%的抗性丛生芽中能够得到抗性生根植株,生根植株PCR检测均为阳性,在部分PCR检测阳性的植株中检测到了GUS的稳定表达。 利用上述改进的青蒿遗传转化体系,我们得到了反义鲨烯合酶基因的青蒿转化植株。PCR检测和Southern杂交检测结果证明了反义鲨烯合酶基因已经整合到青蒿基因组中。RT-PCR检测发现,在转基因株系ASQ3和ASQ5中鲨烯合酶基因在mRNA水平上得到部分抑制,鲨烯含量比对照降低了20%左右;青蒿素的含量分别提高了23.2%和21.5%,结果表明抑制鲨烯合酶表达能够有效促进青蒿中青蒿素的生物合成。
Resumo:
青蒿素是存在于中药青蒿(Artemisia annua L.)中的一种含有过氧桥的倍半萜内酯化合物,是中国科学家研发出的当今最有潜力的抗疟药剂,较传统抗疟药很少或无毒副作用,因此青蒿素的生产备受人们关注。目前,青蒿素的生产主要以植物提取为主,但由于青蒿植株中青蒿素的含量很低(约占干重的0.01%~0.8%),从而导致青蒿素价格昂贵,使许多贫困地区的疟疾患者无法得到医治,故提高青蒿植株中青蒿素的含量或扩大青蒿素的来源,降低生产青蒿素的成本具有重要的意义。 本论文基于扩大青蒿素的来源和提高青蒿植株中青蒿素含量的目的,开展了以下两方面的工作: 一、紫穗槐二烯在烟草中组合生物合成的研究 紫穗槐二烯合酶(amorpha-4,11-diene synthase,ADS)是青蒿素生物合成的关键酶之一,为了能在烟草中合成青蒿素的前体,本研究将青蒿的紫穗槐二烯合酶基因置于CaMV 35S启动子控制下,通过根癌农杆菌介导转入烟草(Nicotiana tobacum L.),并获得了转ADS基因烟草植株。经PCR及Southern杂交分析表明,ADS基因已经整合到转基因烟草基因组中;RT-PCR及对转基因烟草中ADS酶活性和产物中紫穗槐二烯和植物甾醇的测定分析,进一步证明整合的ADS基因在转录、翻译水平上均已经表达。上述结果表明,利用基因工程将青蒿素生物合成途径的关键酶基因导入植物,转基因植物中能够合成青蒿素的前体,这一研究结果为利用转基因植物生产青蒿素或其前体奠定了基础。 二、青蒿鲨烯合酶双链干涉基因对烟草的遗传转化研究 鲨烯合酶(squalene synthase, SQS)是甾醇类生物合成分支途径的关键酶之一,利用RNA干扰技术(RNA interference,RNAi)抑制目标基因表达的技术已日趋成熟。本文根据植物中hpRNA(hairpin RNA)的原理,在与烟草SQS同源性高达80%的青蒿ASQS序列的5/端保守区选择622 bp作为构建RNAi的序列,借助中间克隆载体,经过三次亚克隆,最后形成含ASQS-RNAi表达盒的双元表达载体pART27-ASQS,并转入农杆菌EHA105。采用农杆菌介导的烟草叶盘转化法,共获得了12棵转基因植株。转基因植株经过PCR和PCR-Southern blotting 检测,证实外源ASQS基因已经导入烟草中,并已经成功整合到烟草基因组中;通过RT-PCR分析说明,转基因烟草中SQS基因的表达已被成功抑制,部分转基因植株中内源SQS的干扰效果高达90%以上。对SQS的直接产物鲨烯和最终产物植物甾醇的检测显示,转基因烟草的植物甾醇和鲨烯的含量明显低于对照。本实验的结果为下一步将此RNA干扰载体导入青蒿,抑制青蒿中ASQS基因的表达,从而提高青蒿素的含量提供了可能。
Resumo:
自发现叶黄素循环具有热耗散的作用后它被引起广泛的关注目前普遍认为叶黄素循环的色素定位于天线色素蛋白复合体上在跨膜质子梯度pH形成后玉米黄质Z和环氧玉米黄质A能够从叶绿素中吸收过多的激发能并以热能的形式耗散到体外从而保护光合器官免受强光的破坏紫黄质脱环氧化酶VDE是叶黄素循环的关键酶在较低的pH条件下它能在数分钟内将紫黄质V转变为Z和A本论文从水稻和菠菜中克隆了编码VDE酶的基因并通过转基因植物进一步研究了叶黄素循环在热耗散方面的作用主要获得了以下结果 首次从两个水稻亚种籼稻和粳稻中克隆了Rvde基因分别命名为iRvde和jRvde的全长cDNA序列分别长1647bp和1887bp两者开放阅读框的同源性为98%与其它已知vde基因的同源性在60以上推导两者均编码446个氨基酸其中转运肽序列长98个氨基酸两者成熟蛋白的氨基酸序列完全相同与已知VDE成熟蛋白的同源性在75%以上其中与小麦的同源性最高达87.4 通过PCR扩增获得了Rvde基因的核基因组DNA序列在它们的编码区中含有4个内含子其长度在jRvde中分别为105bp327bp81bp和69bp而iRvde基因的第2个内含子长425bp与jRvde的第2个内含子差别较大内含子的AT含量为6063%其两端为典型的GT/AG结构 构建了Rvde基因的原核表达载体pET-Rvde在0.4mmol/L IPTG的诱导下该基因能在大肠杆菌BL21(DE3)中大量表达SDS-PAGE和Western杂交表明表达蛋白的分子量约为 43 kDa随着IPTG诱导时间的延长蛋白量逐渐增加诱导4h后它占大肠杆菌总蛋白的25左右吸收光谱差值A502-540随反应的进行逐渐增大反应体系总色素的HPLC分析表明V逐渐降低而Z刚好相反说明表达的蛋白具有与活体VDE酶相同的功能能在体外将V转变为A和Z 从菠菜中克隆了Svde基因并构建了该基因的反义抑制植物表达载体pCB-antiSvde用根癌农杆菌介导法转化烟草获得了大量的转基因植株再生的愈伤组织经GUS染色后呈蓝色PCR扩增潮霉素抗性基因hpt和Svde基因结果显示在转基因植株T0和T1代中都分别扩增出1.0 kb和1.4 kb的目的片段而在未转化的对照植株中没有扩增转基因植株的T0代种子在潮霉素培养基上的萌发数与未萌发数的比值为3:1符合单基因的孟德尔分离规律从T1代转基因植株中筛选出抑制程度较强的一个株系A29Southern杂交结果表明外源Svde基因已整合到烟草的基因组中并且只有一个插入位点通过冻融法从该植株的类囊体中提取VDE酶其酶活性为3.2是对照植株的45.7表明VDE酶受到了抑制荧光动力学及HPLC测定结果显示强光处理后在转基因植株中Z和A的形成较少非光化学淬灭NPQ值较对照低Fv/Fm的下降较对照快表明转基因植株的热耗散能力下降进而说明叶黄素循环具有热耗散的功能 同时还建立了根癌农杆菌介导的水稻遗传转化体系并初步作了转化Svde基因的试验另外还建立了一种适合于筛选转基因植株的DNA微量提取法此方法操作快捷方便一个人在一天内能制备50多个样品100mg的植物鲜样平均可获得40µg的DNA提取的DNA可直接用于PCR反应酶切分析及Southern分析
Resumo:
鞑靼荞麦是我国特有的农业产品,具有抗寒耐旱特性和较高的营养保健功能。荞麦的开花习性及遗传特点导致其人工杂交授粉难以成功,这成为荞麦杂交育种难以获得突破的重要原因。因此利用转基因技术导入有益基因有可能成为荞麦遗传改良的新途径,而再生及转化体系的建立是开展转基因研究的基础。 本文研究了苗龄、外植体、几种激素配比对鞑靼荞麦(Fagopyrum tataricum Gaertn.)离体培养的影响,初步建立了鞑靼荞麦离体再生体系。结果表明,鞑靼荞麦离体再生的最佳取材时间为苗龄6-8d;诱导愈伤组织的最适培养基为MS+2.0 mg/L 2,4-D+1.5 mg/L 6-BA,子叶诱愈率达75%左右,下胚轴的可高达86.62%;愈伤组织分化的最适培养基为MS 0.1mg/L IAA+2.0mg/L 6-BA+1.0 mg/L KT+0.5mg/L TDZ,下胚轴的分化率可达9.52%。下胚轴的诱愈率与分化率均高于子叶,更适于离体再生培养。培养基中加入AgNO3后,能有效降低褐化率。生根最适培养基为含有0.5mg/L NAA的1/2MS培养基,生根率在50%左右。TDZ在诱导鞑靼荞麦的愈伤组织分化出芽的过程中起到明显的促进作用,可提高分化率约20%。 在上述研究基础上,本文还对鞑靼荞麦的遗传转化体系进行了探索性研究。分别利用根癌农杆菌(Agrobacterium tumefaciens)介导法和微粒轰击法(基因枪法)对黑水苦荞下胚轴进行遗传转化。 在农杆菌介导的方法中,携带有质粒pCAMBIA2301的农杆菌菌株EHA105用于转化。载体质粒pCAMBIA2301包含有gus和npt-II 基因, 并受35s启动子驱动。研究结果表明,在侵染方式选择上,浸泡方式比吸打方式更有效,根癌农杆菌侵染的较适浓度为OD600=0.5,共培养3天,恢复培养7天,能检测到gus基因的表达。 基因枪法使用质粒pBI121,同样包含有gus和npt-II基因, 并受CaMV35s 启动子驱动。轰击距离为9cm较合适,甘露醇前处理在本研究中未表现出明显优势。 两种转化方法比较,基因枪法比农杆菌介导法更快速有效。 本研究为进一步的遗传操作研究打下基础。 Tartary buckwheat (Fagopyrum tataricum Gaertn.), the traditional and unique agricultural product of China, is a kind of crop with strong drought and cold tolerance, abundant nutrition and high medical value. Artificial hybridization is hard in buckwheat because of its flowering habits and genetic characteristics, which leads to no breakthrough in tartary buckwheat breeding. However, biotechnological approaches, especially genetic transformation for the direct introduction of good genes into tartary buckwheat for quality improvement, hold great promise. In this study, we established tartary buckwheat regeneration system in vitro. It is the foundation for genetic manipulation of this crop. The effects of seedling age, hypocotyl and cotyledon as explants, and proportions of several growth regulators were tested in tissue culture of tartary buckwheat for establishing its in vitro regeneration system. The results showed that the best seedling age for callus induction was 6 to 8 days. On the MS medium containing 2.0mg/L 2, 4-D and 1.5mg/L 6-BA, the induction rate of callus from hypocotyls was up to 86.62%, while from cotyledons was about 75%. The suitable shooting medium was the MS medium+0.1mg/L IAA+2.0mg/L 6-BA+1.0 mg/L KT+0.5mg/L TDZ, and the shooting rate from hypocotyls was 9.52%. The callus induction and shooting rates were higher from hypocotyls than from cotyledons. Browning reduced when the medium mixed with AgNO3. Half strength MS supplemented with 0.5mg/L NAA was the best for rooting, the rate was around 50% after 30 days culture. TDZ can accelerate the shoot differentiation distinctively, and it could improve the shooting rate nearly 20%. On the base of above, the explorative research of the genetic transformation in tartary buckwheat was done. In the study, hypocotyls from Heishui tartary buckwheat were transformed by Agrobacterium-mediated method and microprojectile bombardment method (gene-gun), comparatively. In Agrobacterium-mediated method, a disarmed Agrobacterium tumefaciens strain EHA105 harboring plasmid pCAMBIA2301 was used. The vector pCAMBIA2301 contains gus and npt-II genes, driven by CaMV35s promoter. The results showed that the appropriate concentration of Agrobacterium tumefaciens for infecting was OD600=0.5, and co-culture time was 3d. Seven days later after coculture, GUS expression could be tested. In particle bombardment transformation, plasmid pBI121 was used. pBI121 also contains gus and npt-II genes, driven by 35s promoter. Hypocotyls pretreated with mannitol, no effect was observed, and the suitable distance of bombardment is 9cm. Comparing with Agrobacterium-mediated method, gene-gun method is more convenient and effective. All above results could be a basic work for further study in tartary buckwheat transformation.
Resumo:
地锦(Parthenocissus tricuspidata)为葡萄科(Vitaceae)地锦属(Parthenocissus)多年生大型落叶木质藤本植物,集绿化、环境保护、药用价值为一体,开发利用前景非常广阔。为了进一步有效地利用及增加它的适应性,本论文对地锦的遗传转化及其抑菌活性进行了初步研究。 利用根癌农杆菌(Agrobacterium tumefaciens)介导对地锦进行遗传转化。所转外源目的基因为干旱应答因子结合蛋白DREB基因,克隆自拟南芥,受干旱应答基因启动子rd29Bp驱动。将此基因与pCAMBIA2301重组构建得到植物表达载体p2326。p2326携报告基因b-葡萄糖苷酸酶基因(gus)和选择基因新霉素磷酸转移酶基因(npt II)。然后将p2326导入根癌农杆菌EHA105,对地锦愈伤组织及外植体茎段进行转化。经3-4轮卡那霉素选择培养后,PCR及GUS组织染色验证,表明成功获得了转基因愈伤组织。 对地锦愈伤组织进行耐盐及脯氨酸含量测定。结果表明,转基因愈伤组织与非转基因愈伤组织相比,对高盐的耐受力有较大提高。在250 mM NaC1的继代培养基中,携DREB基因的愈伤组织能够存活20 d以上,而对照在10 d后大多数褐化死亡。高盐胁迫时转基因材料脯氨酸含量高于对照,并能够维持较长时间。 研究还发现,来自室外自然生长的地锦茎、叶,对根癌农杆菌有极强的抑制作用。 因此,对地锦的抑菌作用进行初步研究。 对一年中不同时期(分别采于4月、8月、12月)的地锦茎、叶进行抑菌活性初步研究。结果表明,12月份地锦叶片对所选细菌抑制作用最强。然后对其进行分溶剂萃取。分别用极性递增的有机溶剂依次提取地锦中的有效成分、逐级分离、浓缩干燥,得到石油醚部、乙酸乙酯部、正丁醇部和水部等不同极性溶剂萃取物。选择革兰氏阳性菌和阴性菌共5种对得到的各部分粗提物分别做抑菌实验,表明正丁醇部的抑菌活性最强,水部提取物有一定抑制作用,而石油醚部、乙酸乙酯部没有表现出明显抑菌作用。 地锦正丁醇提取物对大肠杆菌、枯草杆菌、短小芽孢杆菌、农杆菌及酵母菌的最低抑制浓度(MIC)分别为0.25,0.3,0.25,0.3,1g/mL。其抑菌活性随着浓度增加而增强,而且抑菌活性具有较好的热稳定性。 研究发现地锦所产生的抑菌物质不仅对无耐药性的细菌具有抑制作用,而且还对某些耐药性细菌具有抑制作用。目前,细菌对抗生素的耐药性已成为全球关注的问题,寻找新型抗生素已迫在眉捷,地锦抑菌物质的研究为新抗菌药物的研制开发提供了新思路。 上述研究结果,为地锦的遗传改良及开发利用打下基础。
Resumo:
Genetic transformation by electroporation of protoplasts is a standard procedure for many plants. However, for the genus Porphyra, the method is not effective because of low viability of protoplasts and is a time-consuming and expensive procedure. Based on the life history of Porphyra, a spore-targeted strategy of genetic transformation was developed, that is, using fresh conchospores of Porphyra haitanensis Chang & Zheng transformed by agitation with glass beads. A SV40 promoter-driven lacZ reporter gene was expressed in conchospores 48 h after the agitation. More transformants were obtained by increasing the agitation time from 10 to 25 s. The maximum number of transformants was more than six out of 1 million agitated conchospores. Transfer of a SV40 promoter-driven egfp gene into conchospores resulted in significant green GFP fluorescence. The expression of lacZ and egfp revealed that this strategy of spore-targeted transformation using glass bead agitation is feasible in P. haitanensis and that the SV40 promoter is effective for monitoring expression of foreign genes in this red algal species.
Resumo:
The past decade has seen the genetic engineering of various types of seaweed. To date, genetic transformation studies have been carried out in several seaweeds, including the red seaweeds Porphyra, Gracilaria, Grateloupia, Kappaphyclus and Ceramium and the green seaweed Ulva. A genetic transformation model system has been established in the most commonly cultivated seaweed, the brown seaweed Laminaria japonica (kelp), based on the transfer of technology used in land plant transformation and also by modulating the seaweed life cycle. This model showed the potential for application of transgenic kelp to the production of valuable products and an indoor cultivation system for transgenic kelp was proposed, taking into account necessary factors for bio-safety. In this review, the establishment at use of the kelp transformation model is introduced, highlighting the potential for transforming kelp into a marine bioreactor.
Resumo:
Marine Streptomyces are potential candidates for novel natural products and industrial catalysts. In order to set up biosynthesis approach for a holomycin-producing strain M095 isotated from Jiaozhou Bay, China, a genetic transformation system was established using intergeneric conjugation. The plasmid pIJ8600 consists of an origin of replication for Escherichia coli, a phage integrase directing efficient site-specific integration in bacterial chromosome, thiostrepton-induced promoter and an attP sequence. Using E. coli ET12567 (pUZ8002) carrying pIJ8600 as a conjugal donor, while it was mated with strain M095, pIJ8600 was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. The frequency of exconjugants was 1.9 +/- 0.13 x 10(-4) per recipient cell. Analysis of eight exconjugants showed pIJ8600 was stable integrated at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of growth and antimicrobial activity analysis indicated that the integration of pIJ8600 did not seem to affect the biosynthesis of antibiotics or other essential amino acids. To demonstrate the feasibility of above gene transfer system, the allophycocyanin gene (apc) from cyanobacterium Anacystis nidulans UTEX625 was expressed in strain M095, and the results indicated heterologous allophycocyanin could be expressed and folded effectively. (c) 2006 Elsevier GmbH. All rights reserved.