959 resultados para Genetic risk
Resumo:
Previously developed models for predicting absolute risk of invasive epithelial ovarian cancer have included a limited number of risk factors and have had low discriminatory power (area under the receiver operating characteristic curve (AUC) < 0.60). Because of this, we developed and internally validated a relative risk prediction model that incorporates 17 established epidemiologic risk factors and 17 genome-wide significant single nucleotide polymorphisms (SNPs) using data from 11 case-control studies in the United States (5,793 cases; 9,512 controls) from the Ovarian Cancer Association Consortium (data accrued from 1992 to 2010). We developed a hierarchical logistic regression model for predicting case-control status that included imputation of missing data. We randomly divided the data into an 80% training sample and used the remaining 20% for model evaluation. The AUC for the full model was 0.664. A reduced model without SNPs performed similarly (AUC = 0.649). Both models performed better than a baseline model that included age and study site only (AUC = 0.563). The best predictive power was obtained in the full model among women younger than 50 years of age (AUC = 0.714); however, the addition of SNPs increased the AUC the most for women older than 50 years of age (AUC = 0.638 vs. 0.616). Adapting this improved model to estimate absolute risk and evaluating it in prospective data sets is warranted.
Resumo:
In recent years, the phrase 'genomic medicine' has increasingly been used to describe a new development in medicine that holds great promise for human health. This new approach to health care uses the knowledge of an individual's genetic make-up to identify those that are at a higher risk of developing certain diseases and to intervene at an earlier stage to prevent these diseases. Identifying genes that are involved in disease aetiology will provide researchers with tools to develop better treatments and cures. A major role within this field is attributed to 'predictive genomic medicine', which proposes screening healthy individuals to identify those who carry alleles that increase their susceptibility to common diseases, such as cancers and heart disease. Physicians could then intervene even before the disease manifests and advise individuals with a higher genetic risk to change their behaviour - for instance, to exercise or to eat a healthier diet - or offer drugs or other medical treatment to reduce their chances of developing these diseases. These promises have fallen on fertile ground among politicians, health-care providers and the general public, particularly in light of the increasing costs of health care in developed societies. Various countries have established databases on the DNA and health information of whole populations as a first step towards genomic medicine. Biomedical research has also identified a large number of genes that could be used to predict someone's risk of developing a certain disorder. But it would be premature to assume that genomic medicine will soon become reality, as many problems remain to be solved. Our knowledge about most disease genes and their roles is far from sufficient to make reliable predictions about a patient’s risk of actually developing a disease. In addition, genomic medicine will create new political, social, ethical and economic challenges that will have to be addressed in the near future.
Resumo:
Background and Purpose-Plasma glutathione peroxidase (GPx-3) is a major antioxidant enzyme in plasma and the extracellular space that scavenges reactive oxygen species produced during normal metabolism or after oxidative insult. A deficiency of this enzyme increases extracellular oxidant stress, promotes platelet activation, and may promote oxidative posttranslational modification of fibrinogen. We recently identified a haplotype (H-2) in the GPx-3 gene promoter that increases the risk of arterial ischemic stroke among children and young adults. Methods-The aim of this study is to identify possible relationships between promoter haplotypes in the GPx-3 gene and cerebral venous thrombosis (CVT). We studied the GPx-3 gene promoter from 23 patients with CVT and 123 young controls (18 to 45 years) by single-stranded conformational polymorphism and sequencing analysis. Results-Over half of CVT patients (52.1%) were heterozygous (H1H2) or homozygous (H2H2) carriers of the H-2 haplotype compared with 12.2% of controls, yielding a more than 10-fold independent increase in the risk of CVT (OR=10.7; 95% CI, 2.70 to 42.36; P<0.0001). Among women, the interaction of the H2 haplotype with hormonal risk factors increased the OR of CVT to almost 70 (P<0.0001). Conclusions-These findings show that a novel GPx-3 promoter haplotype is a strong, independent risk factor for CVT. As we have previously shown that this haplotype is associated with a reduction in transcriptional activity, which compromises antioxidant activity and antithrombotic benefits of the enzyme, these results suggest that a deficiency of GPx-3 leads to a cerebral venous thrombophilic state.
Resumo:
Background The strongest genetic marker for psoriasis is Cw*06. Polymorphisms in the tumor necrosis factor (TNF)-alpha promoter region, especially replacement of guanine with adenine in positions -238 and -308 are related to higher TNF-alpha production and higher risk for psoriasis in Caucasoid populations, not found in Asians. We performed a case-control study of 69 patients with psoriasis type I and 70 controls, characterized clinical progression along 10-years of follow-up in mild or severe disease and determined HLA class I, II, and TNF single nucleotide polymorphisms (SNPs) -238 and -308 polymorphisms to demonstrate whether these polymorphisms may be genetic risk for susceptibility to psoriasis or severity of the disease in Brazilians. Methods Polymorphisms were identified using PCR/SSP. Alleles, genotypes, and haplotypes frequencies were compared using Fisher`s test. Results More severe disease was found in male patients. It may be suggested that alleles B*37, Cw*06, Cw*12, and DRB1*07 were associated with severe disease course, while B*57 with mild disease. No statistical difference was found between the patients and controls regarding polymorphisms frequencies in TNF SNPs. This study pointed to a higher TNF-238 G/G genotype frequency (OR: 3.21; CI: 1.06-9.71; P = 0.04) in the group with severe disease. Conclusions Polymorphisms in the TNF-alpha SNPs do not seem to be a more important genetic risk factor for psoriasis than the already known Cw*06 in Brazilian patients, but these markers may be related to clinical manifestations.
Genetic and environmental contributions to cannabis dependence in a national young adult twin sample
Resumo:
Background. This paper examines genetic and environmental contributions to risk of cannabis dependence. Method. Symptoms of cannabis dependence and measures of social, family and individual risk factors were assessed in a sample of 6265 young adult male and female Australian twins born 1964-1971. Results. Symptoms of cannabis dependence were common: 11(.)0% of sample (15(.)1% of men and 7(.)8% of women) reported two or more symptoms of dependence. Correlates of cannabis dependence included educational attainment, exposure to parental conflict, sexual abuse, major depression, social anxiety and childhood conduct disorder. However, even after control for the effects of these factors, there was evidence of significant genetic effects on risk of cannabis dependence. Standard genetic modelling indicated that 44(.)7% (95% CI = 15-72(.)2) of the variance in liability to cannabis dependence could be accounted for by genetic factors, 20(.)1% (95 CI = 0-43(.)6) could be attributed to shared environment factors and 35(.)3% (95% CI = 26(.)4-45(.)7) could be attributed to non-shared environmental factors. However, while there was no evidence of significant gender differences in the magnitude of genetic and environmental influences, a model which assumed both genetic and shared environmental influences on risks of cannabis dependence among men and shared environmental but no genetic influences among women provided an equally good fit to the data. Conclusions. There was consistent evidence that genetic risk factors are important determinants of risk of cannabis dependence among men. However, it remains uncertain whether there are genetic influences on liability to cannabis dependence among women.
Resumo:
This paper outlines a major empirical study that is being undertaken by an interdisciplinary team into genetic discrimination in Australia. The 3-year study will examine the nature and extent of this newly emerging phenomenon across the perspectives of consumers, third parties, and the legal system and will analyze its social and legal dimensions. Although the project is confined to Australia, it is expected that the outcomes will have significance for the wider research community as this is the most substantial study of its kind to be undertaken to date into genetic discrimination.
Resumo:
Candidaemia is the fourth most common cause of bloodstream infection, with a high mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we hypothesize that variation in immune genes may predispose to candidaemia. We analyse 118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of European ancestry and a group of 11,920 controls. We validate the significant associations by comparison with a disease-matched control group. We observe significant association between candidaemia and SNPs in the CD58 (P = 1.97 × 10(-11); odds ratio (OR) = 4.68), LCE4A-C1orf68 (P = 1.98 × 10(-10); OR = 4.25) and TAGAP (P = 1.84 × 10(-8); OR = 2.96) loci. Individuals carrying two or more risk alleles have an increased risk for candidaemia of 19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic risk factors for candidaemia, which we subsequently validate for their role in antifungal host defence.
Resumo:
STUDY OBJECTIVE: Prior research has identified five common genetic variants associated with narcolepsy with cataplexy in Caucasian patients. To replicate and/or extend these findings, we have tested HLA-DQB1, the previously identified 5 variants, and 10 other potential variants in a large European sample of narcolepsy with cataplexy subjects. DESIGN: Retrospective case-control study. SETTING: A recent study showed that over 76% of significant genome-wide association variants lie within DNase I hypersensitive sites (DHSs). From our previous GWAS, we identified 30 single nucleotide polymorphisms (SNPs) with P < 10(-4) mapping to DHSs. Ten SNPs tagging these sites, HLADQB1, and all previously reported SNPs significantly associated with narcolepsy were tested for replication. PATIENTS AND PARTICIPANTS: For GWAS, 1,261 narcolepsy patients and 1,422 HLA-DQB1*06:02-matched controls were included. For HLA study, 1,218 patients and 3,541 controls were included. MEASUREMENTS AND RESULTS: None of the top variants within DHSs were replicated. Out of the five previously reported SNPs, only rs2858884 within the HLA region (P < 2x10(-9)) and rs1154155 within the TRA locus (P < 2x10(-8)) replicated. DQB1 typing confirmed that DQB1*06:02 confers an extraordinary risk (odds ratio 251). Four protective alleles (DQB1*06:03, odds ratio 0.17, DQB1*05:01, odds ratio 0.56, DQB1*06:09 odds ratio 0.21, DQB1*02 odds ratio 0.76) were also identified. CONCLUSION: An overwhelming portion of genetic risk for narcolepsy with cataplexy is found at DQB1 locus. Since DQB1*06:02 positive subjects are at 251-fold increase in risk for narcolepsy, and all recent cases of narcolepsy after H1N1 vaccination are positive for this allele, DQB1 genotyping may be relevant to public health policy.
Resumo:
CONTEXT: Several genetic risk scores to identify asymptomatic subjects at high risk of developing type 2 diabetes mellitus (T2DM) have been proposed, but it is unclear whether they add extra information to risk scores based on clinical and biological data. OBJECTIVE: The objective of the study was to assess the extra clinical value of genetic risk scores in predicting the occurrence of T2DM. DESIGN: This was a prospective study, with a mean follow-up time of 5 yr. SETTING AND SUBJECTS: The study included 2824 nondiabetic participants (1548 women, 52 ± 10 yr). MAIN OUTCOME MEASURE: Six genetic risk scores for T2DM were tested. Four were derived from the literature and two were created combining all (n = 24) or shared (n = 9) single-nucleotide polymorphisms of the previous scores. A previously validated clinic + biological risk score for T2DM was used as reference. RESULTS: Two hundred seven participants (7.3%) developed T2DM during follow-up. On bivariate analysis, no differences were found for all but one genetic score between nondiabetic and diabetic participants. After adjusting for the validated clinic + biological risk score, none of the genetic scores improved discrimination, as assessed by changes in the area under the receiver-operating characteristic curve (range -0.4 to -0.1%), sensitivity (-2.9 to -1.0%), specificity (0.0-0.1%), and positive (-6.6 to +0.7%) and negative (-0.2 to 0.0%) predictive values. Similarly, no improvement in T2DM risk prediction was found: net reclassification index ranging from -5.3 to -1.6% and nonsignificant (P ≥ 0.49) integrated discrimination improvement. CONCLUSIONS: In this study, adding genetic information to a previously validated clinic + biological score does not seem to improve the prediction of T2DM.
Resumo:
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Resumo:
INTRODUCTION: We have developed ultra-high risk criteria for bipolar affective disorder (bipolar at-risk - BAR) which include general criteria such as being in the peak age range of the onset of the disorder and a combination of specific criteria including sub-threshold mania, depressive symptoms, cyclothymic features and genetic risk. In the current study, the predictive validity of these criteria were tested in help-seeking adolescents and young adults. METHOD: This medical file-audit study was conducted at ORYGEN Youth Health (OYH), a public mental health program for young people aged between 15 and 24years and living in metropolitan Melbourne, Australia. BAR criteria were applied to the intake assessments of all non-psychotic patients who were being treated in OYH on 31 January, 2008. All entries were then checked for conversion criteria. Hypomania/mania related additions or alterations to existing treatments or initiation of new treatment by the treating psychiatrist served as conversion criteria to mania. RESULTS: The BAR criteria were applied to 173 intake assessments. Of these, 22 patients (12.7%) met BAR criteria. The follow-up period of the sample was 265.5days on average (SD 214.7). There were significantly more cases in the BAR group (22.7%, n=5) than in the non-BAR group (0.7%, n=1) who met conversion criteria (p<.001). CONCLUSIONS: These findings support the notion that people who develop a first episode of mania can be identified during the prodromal phase. The proposed criteria need further evaluation in prospective clinical trials.
Resumo:
Background/Purpose: Gout is a common and excruciatingly painful inflammatory arthritis caused by hyperuricemia. In addition to various lifestyle risk factors, a substantial genetic predisposition to gout has long been recognized. The Global Urate Genetics Consortium (GUGC) has aimed to comprehensively investigate the genetics of serum uric acid and gout using data from _ 140,000 individuals of European-ancestry, 8,340 individuals of Indian ancestry, 5,820 African-Americans, and 15,286 Japanese. Methods: We performed discovery GWAS meta-analyses of serum urate levels (n_110,347 individuals) followed by replication analyses (n_32,813 different individuals). Our gout analysis involved 3,151 cases and 68,350 controls, including 1,036 incident gout cases that met the American College of Rheumatology Criteria. We also examined the association of gout with fractional excretion of uric acid (n_6,799). A weighted genetic urate score was constructed based on the number of risk alleles across urate-associated loci, and their association with the risk of gout was evaluated. Furthermore, we examined implicated transcript expression in cis (expression quantitative trait loci databases) for potential insights into the gene underlying the association signal. Finally, in order to further identify urate-associated genomic regions, we performed functional network analyses that incorporated prior knowledge on molecular interactions in which the gene products of implicated genes operate. Results: We identified and replicated 28 genome-wide significant loci in association with serum urate (P 5_10_8), including all previously-reported loci as well as 18 novel genetic loci. Unlike the majority of previouslyidentified loci, none of the novel loci appeared to be obvious candidates for urate transport. Rather, they were mapped to genes that encode for purine production, transcription, or growth factors with broad downstream responses. Besides SLC2A9 and ABCG2, no additional regions contained SNPs that differed significantly (P _ 5_10_8) between sexes. Urateincreasing alleles were associated with an increased risk of gout for all loci. The urate genetic risk score (ranging from 10 to 45) was significantly associated with an increased odds of prevalent gout (OR per unit increase, 1.11; 95% CI, 1.09-1.14) and incident gout (OR, 1.10; 95% CI, 1.08-1.13). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. Detailed characterization of the loci revealed associations with transcript expression and the fractional excretion of urate. Network analyses implicated the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. Conclusion: The novel genetic candidates identified in this urate/gout consortium study, the largest to date, highlight the importance of metabolic control of urate production and urate excretion. The modulation by signaling processes that influence metabolic pathways such as glycolysis and the pentose phosphate pathway appear to be central mechanisms underpinned by the novel GWAS candidates. These findings may have implications for further research into urate-lowering drugs to treat and prevent gout.
Resumo:
Bipolar affective disorder (BD) is a severe, recurrent and disabling disorder with devastating consequences for individuals, families and society. Although these hazards and costs provide a compelling rationale for development of early detection and early intervention strategies in BD, the development of at-risk criteria for first episode mania is still in an early stage of development. In this paper we review the literature with respect to the clinical, neuroantomical and neuropsychological data, which support this goal. We also describe our recently developed bipolar at-risk criteria (BAR). This criteria comprises the peak age range of the first onset of bipolar disorder, genetic risk, presenting with sub-threshold mania, cyclothymic features or depressive symptoms. An initial pilot evaluation of the BAR criteria in 22 subjects indicated conversion rates to proxies of first-episode mania of 23% within 265 days on average, and high specificity and sensitivity of the criteria. If prospective studies confirm the validity of the BAR criteria, then the criteria would have the potential to open up new avenues of research for indicated prevention in BD and might therefore offer opportunities to ameliorate the severity of, or even prevent BD.
Resumo:
OBJECTIVE: To establish the genetic basis of Landau-Kleffner syndrome (LKS) in a cohort of two discordant monozygotic (MZ) twin pairs and 11 isolated cases. METHODS: We used a multifaceted approach to identify genetic risk factors for LKS. Array comparative genomic hybridization (CGH) was performed using the Agilent 180K array. Whole genome methylation profiling was undertaken in the two discordant twin pairs, three isolated LKS cases, and 12 control samples using the Illumina 27K array. Exome sequencing was undertaken in 13 patients with LKS including two sets of discordant MZ twins. Data were analyzed with respect to novel and rare variants, overlapping genes, variants in reported epilepsy genes, and pathway enrichment. RESULTS: A variant (cG1553A) was found in a single patient in the GRIN2A gene, causing an arginine to histidine change at site 518, a predicted glutamate binding site. Following copy number variation (CNV), methylation, and exome sequencing analysis, no single candidate gene was identified to cause LKS in the remaining cohort. However, a number of interesting additional candidate variants were identified including variants in RELN, BSN, EPHB2, and NID2. SIGNIFICANCE: A single mutation was identified in the GRIN2A gene. This study has identified a number of additional candidate genes including RELN, BSN, EPHB2, and NID2. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Resumo:
Diabetes represents an important health burden on our society: for example in Lausanne (Switzerland) 16% of the adult population have abnormal glucose homeostasis and 6% have diabetes, of which about a third is not aware. Some guidelines identify the "at risk" population for which screening seems indicated. Simple clinical scores have been developed at allow to better estimate the risk of diabetes and hence to potentially better target screening of the disease. The recent discovery of more that 18 genetic variants associated with an increased risk to develop the diseased has allowed to include individual genotype into genetic risk scores. We will discuss in this article the usefulness of these genetic score, how they compare to clinical score, their implication for clinical practice as well as their potential ethical or economical consequences.