911 resultados para Generazione Distribuita Rinnovabili Controllo Tensione Smart Grid
Resumo:
The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.
Resumo:
The smart grid concept is rapidly evolving in the direction of practical implementations able to bring smart grid advantages into practice. Evolution in legacy equipment and infrastructures is not sufficient to accomplish the smart grid goals as it does not consider the needs of the players operating in a complex environment which is dynamic and competitive in nature. Artificial intelligence based applications can provide solutions to these problems, supporting decentralized intelligence and decision-making. A case study illustrates the importance of Virtual Power Players (VPP) and multi-player negotiation in the context of smart grids. This case study is based on real data and aims at optimizing energy resource management, considering generation, storage and demand response.
Resumo:
This paper presents a layered Smart Grid architecture enhancing security and reliability, having the ability to act in order to maintain and correct infrastructure components without affecting the client service. The architecture presented is based in the core of well design software engineering, standing upon standards developed over the years. The layered Smart Grid offers a base tool to ease new standards and energy policies implementation. The ZigBee technology implementation test methodology for the Smart Grid is presented, and provides field tests using ZigBee technology to control the new Smart Grid architecture approach. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
The power systems operation in the smart grid context increases significantly the complexity of their management. New approaches for ancillary services procurement are essential to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. These approaches should include market mechanisms which allow the participation of small and medium distributed energy resources players in a competitive market environment. In this paper, an energy and ancillary services joint market model used by an aggregator is proposed, considering bids of several types of distributed energy resources. In order to improve economic efficiency in the market, ancillary services cascading market mechanism is also considered in the model. The proposed model is included in MASCEM – a multi-agent system electricity market simulator. A case study considering a distribution network with high penetration of distributed energy resources is presented.
Resumo:
The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.
Resumo:
Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
Electric power networks, namely distribution networks, have been suffering several changes during the last years due to changes in the power systems operation, towards the implementation of smart grids. Several approaches to the operation of the resources have been introduced, as the case of demand response, making use of the new capabilities of the smart grids. In the initial levels of the smart grids implementation reduced amounts of data are generated, namely consumption data. The methodology proposed in the present paper makes use of demand response consumers’ performance evaluation methods to determine the expected consumption for a given consumer. Then, potential commercial losses are identified using monthly historic consumption data. Real consumption data is used in the case study to demonstrate the application of the proposed method.
Resumo:
The increasing and intensive integration of distributed energy resources into distribution systems requires adequate methodologies to ensure a secure operation according to the smart grid paradigm. In this context, SCADA (Supervisory Control and Data Acquisition) systems are an essential infrastructure. This paper presents a conceptual design of a communication and resources management scheme based on an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). The methodology is used to support the energy resource management considering all the involved costs, power flows, and electricity prices leading to the network reconfiguration. The methodology also addresses the definition of the information access permissions of each player to each resource. The paper includes a 33-bus network used in a case study that considers an intensive use of distributed energy resources in five distinct implemented operation contexts.
Resumo:
The Smart Grid environment allows the integration of resources of small and medium players through the use of Demand Response programs. Despite the clear advantages for the grid, the integration of consumers must be carefully done. This paper proposes a system which simulates small and medium players. The system is essential to produce tests and studies about the active participation of small and medium players in the Smart Grid environment. When comparing to similar systems, the advantages comprise the capability to deal with three types of loads – virtual, contextual and real. It can have several loads optimization modules and it can run in real time. The use of modules and the dynamic configuration of the player results in a system which can represent different players in an easy and independent way. This paper describes the system and all its capabilities.
Resumo:
The evolution of the electrical grid into a smart grid, allowing user production, storage and exchange of energy, remote control of appliances, and in general optimizations over how the energy is managed and consumed, is also an evolution into a complex Information and Communication Technology (ICT) system. With the goal of promoting an integrated and interoperable smart grid, a number of organizations all over the world started uncoordinated standardization activities, which caused the emergence of a large number of incompatible architectures and standards. There are now new standardization activities which have the goal of organizing existing standards and produce best practices to choose the right approach(es) to be employed in specific smart grid designs. This paper follows the lead of NIST and ETSI/CEN/CENELEC approaches in trying to provide taxonomy of existing solutions; our contribution reviews and relates current ICT state-of-the-art, with the objective of forecasting future trends based on the orientation of current efforts and on relationships between them. The resulting taxonomy provides guidelines for further studies of the architectures, and highlights how the standards in the last mile of the smart grid are converging to common solutions to improve ICT infrastructure interoperability.
Resumo:
Integrating renewable energy into built environments requires additional attention to the balancing of supply and demand due to their intermittent nature. Demand Side Response (DSR) has the potential to make money for organisations as well as support the System Operator as the generation mix changes. There is an opportunity to increase the use of existing technologies in order to manage demand. Company-owned standby generators are a rarely used resource; their maintenance schedule often accounts for a majority of their running hours. DSR encompasses a range of technologies and organisations; Sustainability First (2012) suggest that the System Operator (SO), energy supply companies, Distribution Network Operators (DNOs), Aggregators and Customers all stand to benefit from DSR. It is therefore important to consider impact of DSR measures to each of these stakeholders. This paper assesses the financial implications of organisations using existing standby generation equipment for DSR in order to avoid peak electricity charges. It concludes that under the current GB electricity pricing structure, there are several regions where running diesel generators at peak times is financially beneficial to organisations. Issues such as fuel costs, Carbon Reduction Commitment (CRC) charges, maintenance costs and electricity prices are discussed.
Resumo:
Smart grid research has tended to be compartmentalised, with notable contributions from economics, electrical engineering and science and technology studies. However, there is an acknowledged and growing need for an integrated systems approach to the evaluation of smart grid initiatives. The capacity to simulate and explore smart grid possibilities on various scales is key to such an integrated approach but existing models – even if multidisciplinary – tend to have a limited focus. This paper describes an innovative and flexible framework that has been developed to facilitate the simulation of various smart grid scenarios and the interconnected social, technical and economic networks from a complex systems perspective. The architecture is described and related to realised examples of its use, both to model the electricity system as it is today and to model futures that have been envisioned in the literature. Potential future applications of the framework are explored, along with its utility as an analytic and decision support tool for smart grid stakeholders.