990 resultados para Generalized Symmetrical Components


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) associates with excess cardiovascular risk and there is a need to assess that risk. However, individual lipid levels may be influenced by disease activity and drug use, whereas lipid ratios may be more robust. A cross-sectional cohort of 400 consecutive patients was used to establish factors that influenced individual lipid levels and lipid ratios in RA, using multiple regression models. A further longitudinal cohort of 550 patients with RA was used to confirm these findings, using generalized estimating equations. Cross-sectionally, higher C-reactive protein (CRP) levels correlated with lower levels of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol ([HDL-C] P = .015), whereas lipid ratios did not correlate with CRP. The findings were broadly replicated in the longitudinal data. In summary, the effects of inflammation on individual lipid levels may underestimate lipid-associated cardiovascular disease (CVD) risk in RA, thus lipid ratios may be more appropriate for CVD risk stratification in RA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshko ff and Lubomir Tschakaloff , Sofi a, July, 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy data envelopment analysis (DEA) models emerge as another class of DEA models to account for imprecise inputs and outputs for decision making units (DMUs). Although several approaches for solving fuzzy DEA models have been developed, there are some drawbacks, ranging from the inability to provide satisfactory discrimination power to simplistic numerical examples that handles only triangular fuzzy numbers or symmetrical fuzzy numbers. To address these drawbacks, this paper proposes using the concept of expected value in generalized DEA (GDEA) model. This allows the unification of three models - fuzzy expected CCR, fuzzy expected BCC, and fuzzy expected FDH models - and the ability of these models to handle both symmetrical and asymmetrical fuzzy numbers. We also explored the role of fuzzy GDEA model as a ranking method and compared it to existing super-efficiency evaluation models. Our proposed model is always feasible, while infeasibility problems remain in certain cases under existing super-efficiency models. In order to illustrate the performance of the proposed method, it is first tested using two established numerical examples and compared with the results obtained from alternative methods. A third example on energy dependency among 23 European Union (EU) member countries is further used to validate and describe the efficacy of our approach under asymmetric fuzzy numbers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on theoretical considerations an explanation for the temperature dependence of the thermal expansion and the bulk modulus is proposed. A new equation state is also derived. Additionally a physical explanation for the latent heat of fusion is presented. These theoretical predictions are tested against experiments on highly symmetrical monatomic structures. ^ The volume is not an independent variable and must be broken down into its fundamental components when the relationships to the pressure and temperature are defined. Using zero pressure and temperature reference frame, the initial parameters, volume at zero pressure and temperature[V°], bulk modulus at zero temperature [K°] and volume coefficient of thermal expansion at zero pressure[α°] are defined. ^ The new derived EoS is tested against the experiments on perovskite and epsilon iron. The Root-mean-square-deviations (RMSD) of the residuals of the molar volume, pressure, and temperature are in the range of the uncertainty of the experiments. ^ Separating the experiments into 200 K ranges, the new EoS was compared to the most widely used finite strain, interatomic potential, and empirical isothermal EoSs such as the Burch-Murnaghan, the Vinet, and the Roy-Roy respectively. Correlation coefficients, RMSD's of the residuals, and Akaike Information Criteria were used for evaluating the fitting. Based on these fitting parameters, the new p-V-T EoS is superior in every temperature range relative to the investigated conventional isothermal EoS. ^ The new EoS for epsilon iron reproduces the preliminary-reference earth-model (PREM) densities at 6100-7400 K indicating that the presence of light elements might not be necessary to explain the Earth's inner core densities. ^ It is suggested that the latent heat of fusion supplies the energy required for overcoming on the viscous drag resistance of the atoms. The calculated energies for melts formed from highly symmetrical packing arrangements correlate very well with experimentally determined latent heat values. ^ The optical investigation of carhonado-diamond is also part of the dissertation. The collected first complete infrared FTIR absorption spectra for carhonado-diamond confirm the interstellar origin for the most enigmatic diamonds known as carbonado. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear algebra provides theory and technology that are the cornerstones of a range of cutting edge mathematical applications, from designing computer games to complex industrial problems, as well as more traditional applications in statistics and mathematical modelling. Once past introductions to matrices and vectors, the challenges of balancing theory, applications and computational work across mathematical and statistical topics and problems are considerable, particularly given the diversity of abilities and interests in typical cohorts. This paper considers two such cohorts in a second level linear algebra course in different years. The course objectives and materials were almost the same, but some changes were made in the assessment package. In addition to considering effects of these changes, the links with achievement in first year courses are analysed, together with achievement in a following computational mathematics course. Some results that may initially appear surprising provide insight into the components of student learning in linear algebra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to accurately predict the lifetime of building components is crucial to optimizing building design, material selection and scheduling of required maintenance. This paper discusses a number of possible data mining methods that can be applied to do the lifetime prediction of metallic components and how different sources of service life information could be integrated to form the basis of the lifetime prediction model