952 resultados para Generalised Additive Model
Resumo:
158 p.
Resumo:
Transient flows in a confined ventilated space induced by a buoyancy source of time-varying strength and an external wind are examined. The space considered has varying cross-sectional area with height. A generalised theoretical model is proposed to investigate the flow dynamics following the activation of an external wind and an internal source of buoyancy. To investigate the effect of geometry, we vary the angle of the wall inclination of a particular geometry in which a point source of constant buoyancy is activated in the absence of wind. Counter-intuitively the ventilation is worse and lower airflow rates are established for geometries of increasing cross-sectional areas with height. We investigate the effect of the source buoyancy strength by comparing two cases: (1) when the buoyancy input is constant and (2) when the buoyancy input gradually increases over time so that after a finite time the total buoyancy inputs for (1) and (2) are identical. The rate at which the source heat gains are introduced has a significant role on the flow behaviour as we find that, in case (2), a warmer layer and a more pronounced overshoot are obtained than in case (1). The effect of assisting and opposing wind on the transient ventilation of an enclosure of constant cross-sectional area with height and constant heat gains is examined. A Froude number Fr is used to define the relative strengths of the buoyancy-induced and wind-induced velocities and five different transient states and their associated critical Fr are identified. © 2010 Elsevier Ltd.
Resumo:
Introduction: Healthcare improvements have allowed prevention but have also increased life expectancy, resulting in more people being at risk. Our aim was to analyse the separate effects of age, period and cohort on incidence rates by sex in Portugal, 2000–2008. Methods: From the National Hospital Discharge Register, we selected admissions (aged ≥49 years) with hip fractures (ICD9-CM, codes 820.x) caused by low/moderate trauma (falls from standing height or less), readmissions and bone cancer cases. We calculated person-years at risk using population data from Statistics Portugal. To identify period and cohort effects for all ages, we used an age–period–cohort model (1-year intervals) followed by generalised additive models with a negative binomial distribution of the observed incidence rates of hip fractures. Results: There were 77,083 hospital admissions (77.4 % women). Incidence rates increased exponentially with age for both sexes (age effect). Incidence rates fell after 2004 for women and were random for men (period effect). There was a general cohort effect similar in both sexes; risk of hip fracture altered from an increasing trend for those born before 1930 to a decreasing trend following that year. Risk alterations (not statistically significant) coincident with major political and economic change in the history of Portugal were observed around birth cohorts 1920 (stable–increasing), 1940 (decreasing–increasing) and 1950 (increasing–decreasing only among women). Conclusions: Hip fracture risk was higher for those born during major economically/politically unstable periods. Although bone quality reflects lifetime exposure, conditions at birth may determine future risk for hip fractures.
Resumo:
A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.
Resumo:
This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.
Resumo:
In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
Euphausiids constitute major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Changes in the abiotic conditions also shape Euphausiid metabolism including aerobic and anaerobic energy production. Here we introduce a global krill respiration model which includes the effect of latitude (LAT), the day of the year of interest (DoY), and the number of daylight hours on the day of interest (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth) in the ANN model (Artificial Neural Networks). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r**2=0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. We also tested for seasonality the standard respiration rate of the most common species that were investigated until now in a large range of DLh and DoY with Multiple Linear Regression (MLR) or General Additive model (GAM). GAM successfully integrated DLh (r**2= 0.563) and DoY (r**2= 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. Neither the MLR nor the GAM approach worked for the North Pacific krill Euphausia pacifica, and MLR for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modelling.
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation
Resumo:
Blue whiting (Micromesistius poutassou, http://www.marinespecies.org/aphia.php?p=taxdetails&id=126439) is a small mesopelagic planktivorous gadoid found throughout the North-East Atlantic. This data contains the results of a model-based analysis of larvae captured by the Continuous Plankton Recorder (CPR) during the period 1951-2005. The observations are analysed using Generalised Additive Models (GAMs) of the the spatial, seasonal and interannual variation in the occurrence of larvae. The best fitting model is chosen using the Aikaike Information Criteria (AIC). The probability of occurrence in the continous plankton recorder is then normalised and converted to a probability distribution function in space (UTM projection Zone 28) and season (day of year). The best fitting model splits the distribution into two separate spawning grounds north and south of a dividing line at 53 N. The probability distribution is therefore normalised in these two regions (ie the space-time integral over each of the two regions is 1). The modelled outputs are on a UTM Zone 28 grid: however, for convenience, the latitude ("lat") and longitude ("lon") of each of these grid points are also included as a variable in the NetCDF file. The assignment of each grid point to either the Northern or Southern component (defined here as north/south of 53 N), is also included as a further variable ("component"). Finally, the day of year ("doy") is stored as the number of days elapsed from and included January 1 (ie doy=1 on January 1) - the year is thereafter divided into 180 grid points.
Resumo:
The effect of the tumour-forming disease, fibropapillomatosis, on the somatic growth dynamics of green turtles resident in the Pala'au foraging grounds (Moloka'i, Hawai'i) was evaluated using a Bayesian generalised additive mixed modelling approach. This regression model enabled us to account for fixed effects (fibropapilloma tumour severity), nonlinear covariate functional form (carapace size, sampling year) as well as random effects due to individual heterogeneity and correlation between repeated growth measurements on some turtles. Somatic growth rates were found to be nonlinear functions of carapace size and sampling year but were not a function of low-to-moderate tumour severity. On the other hand, growth rates were significantly lower for turtles with advanced fibropapillomatosis, which suggests a limited or threshold-specific disease effect. However, tumour severity was an increasing function of carapace size-larger turtles tended to have higher tumour severity scores, presumably due to longer exposure of larger (older) turtles to the factors that cause the disease. Hence turtles with advanced fibropapillomatosis tended to be the larger turtles, which confounds size and tumour severity in this study. But somatic growth rates for the Pala'au population have also declined since the mid-1980s (sampling year effect) while disease prevalence and severity increased from the mid-1980s before levelling off by the mid-1990s. It is unlikely that this decline was related to the increasing tumour severity because growth rates have also declined over the last 10-20 years for other green turtle populations resident in Hawaiian waters that have low or no disease prevalence. The declining somatic growth rate trends evident in the Hawaiian stock are more likely a density-dependent effect caused by a dramatic increase in abundance by this once-seriously-depleted stock since the mid-1980s. So despite increasing fibropapillomatosis risk over the last 20 years, only a limited effect on somatic growth dynamics was apparent and the Hawaiian green turtle stock continues to increase in abundance.
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation
Resumo:
Background: Many studies have illustrated that ambient air pollution negatively impacts on health. However, little evidence is available for the effects of air pollution on cardiovascular mortality (CVM) in Tianjin, China. Also, no study has examined which strata length for the time-stratified case–crossover analysis gives estimates that most closely match the estimates from time series analysis. Objectives: The purpose of this study was to estimate the effects of air pollutants on CVM in Tianjin, China, and compare time-stratified case–crossover and time series analyses. Method: A time-stratified case–crossover and generalized additive model (time series) were applied to examine the impact of air pollution on CVM from 2005 to 2007. Four time-stratified case–crossover analyses were used by varying the stratum length (Calendar month, 28, 21 or 14 days). Jackknifing was used to compare the methods. Residual analysis was used to check whether the models fitted well. Results: Both case–crossover and time series analyses show that air pollutants (PM10, SO2 and NO2) were positively associated with CVM. The estimates from the time-stratified case–crossover varied greatly with changing strata length. The estimates from the time series analyses varied slightly with changing degrees of freedom per year for time. The residuals from the time series analyses had less autocorrelation than those from the case–crossover analyses indicating a better fit. Conclusion: Air pollution was associated with an increased risk of CVM in Tianjin, China. Time series analyses performed better than the time-stratified case–crossover analyses in terms of residual checking.
Resumo:
The potential of multiple distribution static synchronous compensators (DSTATCOMs) to improve the voltage profile of radial distribution networks has been reported in the literature by few authors. However, the operation of multiple DSTATCOMs across a distribution feeder may introduce control interactions and/or voltage instability. This study proposes a control scheme that alleviates interactions among controllers and enhances proper reactive power sharing among DSTATCOMs. A generalised mathematical model is presented to analyse the interactions among any number of DSTATCOMs in the network. The criterion for controller design is developed by conducting eigenvalue analysis on this mathematical model. The proposed control scheme is tested in time domain on a sample radial distribution feeder installed with multiple DSTATCOMs and test results are presented.
Resumo:
The calcium-activated potassium ion channel gene (KCNN3) is located in the vicinity of the familial hemiplegic migraine type 2 locus on chromosome 1q21.3. This gene is expressed in the central nervous system and plays a role in neural excitability. Previous association studies have provided some, although not conclusive, evidence for involvement of this gene in migraine susceptibility. To elucidate KCNN3 involvement in migraine, we performed gene-wide SNP genotyping in a high-risk genetic isolate from Norfolk Island, a population descended from a small number of eighteenth century Isle of Man ‘Bounty Mutineer’ and Tahitian founders. Phenotype information was available for 377 individuals who are related through the single, well-defined Norfolk pedigree (96 were affected: 64 MA, 32 MO). A total of 85 SNPs spanning the KCNN3 gene were genotyped in a sub-sample of 285 related individuals (76 affected), all core members of the extensive Norfolk Island ‘Bounty Mutineer’ genealogy. All genotyping was performed using the Illumina BeadArray platform. The analysis was performed using the statistical program SOLAR v4.0.6 assuming an additive model of allelic effect adjusted for the effects of age and sex. Haplotype analysis was undertaken using the program HAPLOVIEW v4.0. A total of four intronic SNPs in the KCNN3 gene displayed significant association (P < 0.05) with migraine. Two SNPs, rs73532286 and rs6426929, separated by approximately 0.1 kb, displayed complete LD (r 2 = 1.00, D′ = 1.00, D′ 95% CI = 0.96–1.00). In all cases, the minor allele led to a decrease in migraine risk (beta coefficient = 0.286–0.315), suggesting that common gene variants confer an increased risk of migraine in the Norfolk pedigree. This effect may be explained by founder effect in this genetic isolate. This study provides evidence for association of variants in the KCNN3 ion channel gene with migraine susceptibility in the Norfolk genetic isolate with the rarer allelic variants conferring a possible protective role. This the first comprehensive analysis of this potential candidate gene in migraine and also the first study that has utilised the unique Norfolk Island large pedigree isolate to implicate a specific migraine gene. Studies of additional variants in KCNN3 in the Norfolk pedigree are now required (e.g. polyglutamine variants) and further analyses in other population data sets are required to clarify the association of the KCNN3 gene and migraine risk in the general outbred population.