991 resultados para Gene inactivation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Promoter hypermethylation of CDKN2A (p16INK4A protein) is the main mechanism of gene inactivation. However, its association with Helicobacter pylori infection is a controversial issue. Therefore, we examined a series of gastric adenocarcinomas to assess the association between p16INK4A inactivation and H. pylori genotype (vacA, cagA, cagE, virB11 and flaA) according to the location and histological subtype of the tumors. p16INK4A expression and CDKN2A promoter methylation were found in 77 gastric adenocarcinoma samples by immunohistochemistry and methylation-specific PCR, respectively. Helicobacter pylori infection and genotype were determined by PCR. A strong negative correlation between immunostaining and CDKN2A promoter region methylation was found. In diffuse subtype tumors, the inactivation of p16INK4A by promoter methylation was unique in noncardia tumors (p = 0.022). In addition, H. pylori-bearing flaA was associated with non-methylation tumors (p = 0.008) and H. pylori strain bearing cagA or vacAs1m1 genes but without flaA was associated with methylated tumors (p = 0.022 and 0.003, respectively). Inactivation of p16INK4A in intestinal and diffuse subtypes showed distinct carcinogenic pathways, depending on the tumor location. Moreover, the process of methylation of the CDKN2A promoter seems to depend on the H. pylori genotype. The present data suggest that there is a differential influence and relevance of H. pylori genotype in gastric cancer development.
Resumo:
Introduction: Helicobacter pylori infection is an established risk factor for gastric cancer development, but the exact underlying mechanism still remains obscure. The inactivation of tumor suppressor genes such as p53 and p27(KIP1) is a hypothesized mechanism, although there is no consensus regarding the influence of H. pylori cagA(+) in the development of these genetic alterations. Goals: To verify the relationship among H. pylori infection, p53 mutations and p27(Kip1) Protein (p27) expression in gastric adenocarcinomas (GA) seventy-four tissues were assayed by PCR for H. pylori and cagA presence. Mutational analysis of p53 gene was performed by single-strand conformation polymorphism (SSCP). Seventy tissues were analyzed by an immunohistochemical method for p27 expression. Results: From the samples examined, 95% (70/74) were H. pylori positive, 63% cagA(+). Altered p53 electrophoretic mobility was found in 72% of cases and significantly more frequent in the presence of cagA. Considerable reduction in p27 expression (19%) was found with a tendency for association between cagA(+) and p27(-), although the results were not statistically significant. Concomitant alterations of both suppressor genes were detected in 60% of cases. In the cases cagA(+), 66.7% of them had these concomitant alterations. Conclusions: The data suggest that H. pylori cagA(+) contributes to p53 alteration and indicate that concomitant gene inactivation, with reduced p27 expression, may be a mechanism in which H. pylori can promote the development and progression of gastric cancer. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background: Frequent loss of heterozygosity (LOH) has been reported in many types of cancer, including head and neck carcinomas. Somatic deletions involving specific chromosomal regions are strongly associated with inactivation of the allele of a tumor suppressor gene located within the deleted region. In most studies concerning LOH in head and neck squamous cell carcinomas (HNSCC) the different anatomical sites are not distinguished. The behavior of tumors arising at various sites differs significantly, however, suggesting different intrinsic tumor properties. In this study we compared the LOH on 22q and its relationship to clinicopathological parameters at the three major sites of HNSCC: oral cavity, larynx and pharynx. Material/Methods: LOH and microsatellite instability (MSI) were studied using seven polymorphic microsatellite markers mapped to the 22q11-q13.3 region in 37 oral, 32 laryngeal, and 31 pharyngeal carcinomas. Results: Two separate regions of LOH were identified in the laryngeal (22q11.2-12.1) and oral cavity (22q13.1-13.31) tumors. When the different anatomical sites were compared, a statistically significant difference was found between the presence of LOH at D22S421 (p<0.001), D22S315 (p=0.014) and D22S929 (p=0.026) in the laryngeal tumors. Conclusions: These data suggest that distinct regions on 22q are involved in LOH in oral cavity and laryngeal tumorigenesis but do not support a similar association between the development of pharyngeal tumors and genes located on 22q. These findings implicate the presence of different tumor suppressor genes mapping to distinct regions on chromosome 22q in oral and laryngeal carcinomas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Das aus wissenschaftlicher und ökonomischer Sicht wichtigste Pflanzenpathogen M. oryzae entwickelte im Laufe der Evolution konservierte aber auch einzigartige Mechanismen zur Signaltransduktion. Das Erforschen dieser Mechanismen und Prozesse ist essenziell für das Verständnis von Differenzierungsprozessen bei der Pathogen-Wirt-Interaktion.rnIm ersten Teil der vorliegenden Arbeit wurde der Signalweg zur Osmoregulation, der „High Osmolarity Glycerol“ (HOG)-Signalweg, erstmals anhand physiologischer Experimente in entsprechenden Mutantenstämmen in M. oryzae untersucht. Dabei konnten klare Unter-schiede zum HOG-Signalweg von S. cerevisiae aufgezeigt werden. rnDas in M. oryzae bisher noch nicht beschriebene Gen MoYPD1, welches das Phosphotransferprotein MoYpd1p kodiert, wurde erfolgreich inaktiviert. Diese Inaktivierung ist in S. cerevisiae und vielen anderen Pilzen letal und resultierte bei M. oryzae in einer apathoge¬nen Albinomutante, deren Konidiogenese gestört ist. Insbesondere die Funktion des Phosphotransferproteins MoYpd1p, sowohl im Phosphorelaysystem des HOG-Signal¬wegs als auch im Wirkmechanismus des Fungizids Fludioxonil, konnte eindeutig mittels Y2H- und Western Blot-Analysen nachgewiesen werden.rnEs wurden entscheidende Fortschritte für das Verständnis des Aufbaus und der Funktion des HOG-Signalwegs sowohl als physiologisches Regulationssystem für Umweltreize als auch als Fungizidtarget im Pflanzenschutz erzielt. Dabei konnte gezeigt werden, dass die Zweikompo-nenten-Hybrid-Histidinkinase (HIK) MoSln1p als Signalsensor für Salzstress und MoHik1p als Signalsensor für Zuckerstress fungiert. Die Beteiligung der Histidinkinasen MoHik5p und MoHik9p als Sensorproteine für Hypoxie im HOG-Signalweg ist durchaus denk¬bar und wurde durch erste Ergebnisse bekräftigt. rnSo konnte der HOG-Signalweg in mehreren Modellen dargestellt werden. Die Modelle der Signalerkennung und –transduktion von osmotischem Stress, von Hypoxie und der Wirkmecha¬nismus von Fludioxonil wurden erstmals in diesem Umfang für M. oryzae ausgearbei¬tet.rnDer zweite Teil dieser Arbeit repräsentiert die erste umfassende Untersuchung aller zehn HIK-codierender Gensequenzen, die im Genom von M. oryzae identifiziert werden konnten. Diese Signalproteine waren bisher noch nicht Gegenstand wissenschaftlicher Studien. Die Untersuchung beginnt mit einer phylogenetischen Einordnung aller untersuchten Proteinsequen¬zen in die verschiedenen Gruppen von Histidinkinasen in Pilzen. Eine ausführli-che phänotypische Charakterisierung aller HIK-codierender Gene folgt und wurde anhand von Mutanten durchgeführt, in denen diese Gene einzeln inaktiviert wurden.rnDie Beteiligung von MoHik5p und MoHik9p als mögliche Sauerstoffsensoren im HOG-Signal-weg konnte dokumentiert werden und die anschließenden Western Blot-Analysen bestätig¬ten erstmals die Aktivierung des HOG-Signalwegs bei hypoxieähnlichen Zuständen.rnDes Weiteren wurden mit MoHik5p und MoHik8p zwei neue Pathogenitätsfaktoren in M. oryzae identifiziert. Die apathogenen Mutantenstämme ΔMohik5 und ΔMohik8 sind in der Konidiogenese gestört und nicht in der Lage Appressorien zu differenzieren. Der Einsatz dieser Proteine als Fungizidtarget im protektiven Pflanzenschutz in der Zukunft ist somit denk-bar.rn
Resumo:
New tetracycline and streptomycin resistance genes, tet(44) and ant(6)-Ib, were identified in Campylobacter fetus subsp. fetus within a transferable pathogenicity island that is typically unique to Campylobacter fetus subsp. venerealis. The 640-amino-acid tetracycline resistance determinant, Tet 44, belongs to a class of proteins that confers resistance to tetracycline and minocycline by ribosomal protection. The 286-amino-acid streptomycin resistance determinant, ANT(6)-Ib, belongs to a family of aminoglycoside nucleotidyltransferases. The resistance phenotypes were demonstrated by gene inactivation and expression.
Resumo:
Because Staphylococcus aureus strains contain multiple virulence factors, studying their pathogenic role by single-gene inactivation generated equivocal results. To circumvent this problem, we have expressed specific S. aureus genes in the less virulent organism Streptococcus gordonii and tested the recombinants for a gain of function both in vitro and in vivo. Clumping factor A (ClfA) and coagulase were investigated. Both gene products were expressed functionally and with similar kinetics during growth by streptococci and staphylococci. ClfA-positive S. gordonii was more adherent to platelet-fibrin clots mimicking cardiac vegetations in vitro and more infective in rats with experimental endocarditis (P < 0.05). Moreover, deleting clfA from clfA-positive streptococcal transformants restored both the low in vitro adherence and the low in vivo infectivity of the parent. Coagulase-positive transformants, on the other hand, were neither more adherent nor more infective than the parent. Furthermore, coagulase did not increase the pathogenicity of clfA-positive streptococci when both clfA and coa genes were simultaneously expressed in an artificial minioperon in streptococci. These results definitively attribute a role for ClfA, but not coagulase, in S. aureus endovascular infections. This gain-of-function strategy might help solve the role of individual factors in the complex the S. aureus-host relationship.
Resumo:
Loss of antiproliferative function of p53 by point mutation occurred frequently in various solid tumors. However, the genetic change of p53 by deletion or point mutation was a rare event (6%) in the cells of 49 AML patients analyzed by single-stranded conformation polymorphism and sequencing. Despite infrequent point mutation, abundant levels of p53 protein were detected in 75% of AML patients studied by immunoprecipitation with p53 specific antibodies. Furthermore, p53 protein in most cases had an altered conformation as analyzed by the reactivity to PAb240 which recognizes mutant p53; p53 protein in mitogen stimulated normal lymphocytes also had similar altered conformation. This altered conformation may be another mechanism for inactivation of p53 function in the growth stimulated environment. Some evidence indicated that posttranslational modification by phosphorylation may contribute to the conformational change of p53.^ Retinoblastoma (Rb) gene inactivation by deletion, rearrangement or mutation has also been implicated in many types of solid tumors. Our studies showed that absence or low levels of Rb protein were observed in more than 20% of AML patients at diagnosis, and the low levels of Rb correlated with shorter survival of patients. The absence of Rb protein was due to gene inactivation in some cases and to abnormal regulation of Rb expression in others. ^
Intratumoral hypoxia as the genesis of genetic instability and clinical prognosis in prostate cancer
Resumo:
Intratumoral hypoxia is prevalent in many solid tumors and is a marker of poor clinical prognosis in prostate cancer. The presence of hypoxia is associated with increased chromosomal instability, gene amplification, downregulation of DNA damage repair pathways, and altered sensitivity to agents that damage DNA. These genomic changes could also lead to oncogene activation or tumor suppressor gene inactivation during prostate cancer progression. We review here the concept of repair-deficient hypoxic tumor cells that can adapt to low oxygen levels and acquire an aggressive "unstable mutator" phenotype. We speculate that hypoxia-induced genomic instability may also be a consequence of aberrant mitotic function in hypoxic cells, which leads to increased chromosomal instability and aneuploidy. Because both hypoxia and aneuploidy are prognostic factors in prostate cancer, a greater understanding of these biological states in prostate cancer may lead to novel prognostic and predictive tests and drive new therapeutic strategies in the context of personalized cancer medicine.
Resumo:
Regardless of genetic sex, amniotes develop two sets of genital ducts, the Wolffian and Müllerian ducts. Normal sexual development requires the differentiation of one duct and the regression of the other. I show that cells in the rostral most region of the coelomic epithelium (CE) are specified to a Müllerian duct fate beginning at Tail Somite Stage 19 (TS19). The Müllerian duct (MD) invaginates from the CE where it extends caudally to and reaches the Wolffian duct (WD) by TS22. Upon contact, the MD elongates to the urogenital sinus separating the WD from the CE and its formation is complete by TS34. During its elongation, the MD is associated with and dependent upon the WD and I have identified the mechanism for MD elongation. Using the Rosa26 reporter to fate map the WD, I show that the WD does not contribute cells to the MD. Using an in vitro recombinant explant culture assay I show that the entire length of the MD is derived from the CE. Furthermore, I analyzed cell proliferation and developed an in vitro assay to show that a small population of cells at the caudal tip proliferates, laying the foundation for the formation of the MD. I also show that during its formation, the MD has a distinctive mesoepithelial character. The MD in males regresses under the influence of Anti-Müllerian Hormone (AMH). Through tissue-specific gene inactivation I have identified that Acvr1 and Bmpr1a and Smad1, Smad5 and Smad8 function redundantly in transducing the AMH signal. In females the MD differentiates into an epithelial tube and eventually the female reproductive tract. However, the exact tissue into which the MD differentiates has not been determined. I therefore generated a MD specific Cre allele that will allow for the fate mapping of the MD in both females males. The MD utilizes a unique form of tubulogenesis during development and to my knowledge is the only tubule that relies upon a signal from and the presence of another distinct epithelial tube for its formation.^
Resumo:
The β-adrenergic receptor kinase 1 (βARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the βARK1 gene in mice by homologous recombination. No homozygote βARK1−/− embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, βARK1−/− embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the “thin myocardium syndrome” observed upon gene inactivation of several transcription factors (RXRα, N-myc, TEF-1, WT-1). Lethality in βARK1−/− embryos is likely due to heart failure as they exhibit a >70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in βARK1−/− embryos demonstrate that βARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development.
Resumo:
Although the zebrafish possesses many characteristics that make it a valuable model for genetic studies of vertebrate development, one deficiency of this model system is the absence of methods for cell-mediated gene transfer and targeted gene inactivation. In mice, embryonic stem cell cultures are routinely used for gene transfer and provide the advantage of in vitro selection for rare events such as homologous recombination and targeted mutation. Transgenic animals possessing a mutated copy of the targeted gene are generated when the selected cells contribute to the germ line of a chimeric embryo. Although zebrafish embryo cell cultures that exhibit characteristics of embryonic stem cells have been described, successful contribution of the cells to the germ-cell lineage of a host embryo has not been reported. In this study, we demonstrate that short-term zebrafish embryo cell cultures maintained in the presence of cells from a rainbow trout spleen cell line (RTS34st) are able to produce germ-line chimeras when introduced into a host embryo. Messenger RNA encoding the primordial germ-cell marker, vasa, was present for more than 30 days in embryo cells cocultured with RTS34st cells or their conditioned medium and disappeared by 5 days in the absence of the spleen cells. The RTS34st cells also inhibited melanocyte and neuronal cell differentiation in the embryo cell cultures. These results suggest that the RTS34st splenic–stromal cell line will be a valuable tool in the development of a cell-based gene transfer approach to targeted gene inactivation in zebrafish.
Resumo:
Disruptions of the genes encoding endothelin 3 (EDN3) and its receptor endothelin-B receptor (EDNRB) in the mouse result in defects of two neural crest (NC)-derived lineages, the melanocytes, and the enteric nervous system. To assess the mechanisms through which the EDN3/EDNRB signaling pathway can selectively act on these NC derivatives, we have studied the spatiotemporal expression pattern of the EDNRB gene in the avian embryo, a model in which NC development has been extensively studied. For this purpose, we have cloned the quail homologue of the mammalian EDNRB cDNA. EDNRB transcripts are present in NC cells before and during their emigration from the neural tube at all levels of the neuraxis. At later developmental stages, the receptor remains abundantly expressed in the peripheral nervous system including the enteric nervous system. In a previous study, we have shown that EDN3 enhances dramatically the proliferation of NC cells when they are at the pluripotent stage. We propose that the selective effect of EDN3 or EDNRB gene inactivation is due to the fact that both melanocytes and enteric nervous system precursors have to colonize large embryonic areas (skin and bowel) from a relatively small population of precursors that have to expand considerably in number. It is therefore understandable that a deficit in one of the growth-promoting pathways of NC cells has more deleterious effects on long-range migrating cells than on the NC derivatives which develop close to the neural primordium like the sensory and sympathetic ganglia.