955 resultados para Gaussian and Lorentz spectral fitting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of signals in the presence of noise is one of the most basic and important problems encountered by communication engineers. Although the literature abounds with analyses of communications in Gaussian noise, relatively little work has appeared dealing with communications in non-Gaussian noise. In this thesis several digital communication systems disturbed by non-Gaussian noise are analysed. The thesis is divided into two main parts. In the first part, a filtered-Poisson impulse noise model is utilized to calulate error probability characteristics of a linear receiver operating in additive impulsive noise. Firstly the effect that non-Gaussian interference has on the performance of a receiver that has been optimized for Gaussian noise is determined. The factors affecting the choice of modulation scheme so as to minimize the deterimental effects of non-Gaussian noise are then discussed. In the second part, a new theoretical model of impulsive noise that fits well with the observed statistics of noise in radio channels below 100 MHz has been developed. This empirical noise model is applied to the detection of known signals in the presence of noise to determine the optimal receiver structure. The performance of such a detector has been assessed and is found to depend on the signal shape, the time-bandwidth product, as well as the signal-to-noise ratio. The optimal signal to minimize the probability of error of; the detector is determined. Attention is then turned to the problem of threshold detection. Detector structure, large sample performance and robustness against errors in the detector parameters are examined. Finally, estimators of such parameters as. the occurrence of an impulse and the parameters in an empirical noise model are developed for the case of an adaptive system with slowly varying conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 42C05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 15A29.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent developments in high magnetic field 13C magnetic resonance spectroscopy with improved localization and shimming techniques have led to important gains in sensitivity and spectral resolution of 13C in vivo spectra in the rodent brain, enabling the separation of several 13C isotopomers of glutamate and glutamine. In this context, the assumptions used in spectral quantification might have a significant impact on the determination of the 13C concentrations and the related metabolic fluxes. In this study, the time domain spectral quantification algorithm AMARES (advanced method for accurate, robust and efficient spectral fitting) was applied to 13 C magnetic resonance spectroscopy spectra acquired in the rat brain at 9.4 T, following infusion of [1,6-(13)C2 ] glucose. Using both Monte Carlo simulations and in vivo data, the goal of this work was: (1) to validate the quantification of in vivo 13C isotopomers using AMARES; (2) to assess the impact of the prior knowledge on the quantification of in vivo 13C isotopomers using AMARES; (3) to compare AMARES and LCModel (linear combination of model spectra) for the quantification of in vivo 13C spectra. AMARES led to accurate and reliable 13C spectral quantification similar to those obtained using LCModel, when the frequency shifts, J-coupling constants and phase patterns of the different 13C isotopomers were included as prior knowledge in the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The XPS peaks of Fe 3p for Fe2+ and Fe3+ in FeO and Fe2O3, respectively, have been measured and the effects of curve fitting parameters on interpretation of the data have been analysed. Firstly, the peak fit parameters, i.e. (1) the number of peaks to be deconvoluted, (2) the range of the peak for back ground subtraction, (3) straight line (Li) or the Shirley (Sh) background subtraction method, (4) GL ratio (the ratio of Gaussian and Lorentzian contribution to the peak shape) and (5) asymmetry factor (AS), are manually selected. Secondly, the standard peak fit parameters were systematically investigated. The peak shape was fitted to a Voigt function by changing the peak position, the peak height and the full width at half maximum (FWHM) to minimize the chi(2). The recommended peak positions and peak parameters for Fe2+ and Fe3+ in iron oxides have been determined. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. HD 181231 is a B5IVe star, which has been observed with the CoRoT satellite during similar to 5 consecutive months and simultaneously from the ground in spectroscopy and spectropolarimetry. Aims. By analysing these data, we aim to detect and characterize as many pulsation frequencies as possible, to search for the presence of beating effects possibly at the origin of the Be phenomenon. Our results will also provide a basis for seismic modelling. Methods. The fundamental parameters of the star are determined from spectral fitting and from the study of the circumstellar emission. The CoRoT photometric data and ground-based spectroscopy are analysed using several Fourier techniques: CLEAN-NG, PASPER, and TISAFT, as well as a time-frequency technique. A search for a magnetic field is performed by applying the LSD technique to the spectropolarimetric data. Results. We find that HD 181231 is a B5IVe star seen with an inclination of similar to 45 degrees. No magnetic field is detected in its photosphere. We detect at least 10 independent significant frequencies of variations among the 54 detected frequencies, interpreted in terms of non-radial pulsation modes and rotation. Two longer-term variations are also detected: one at similar to 14 days resulting from a beating effect between the two main frequencies of short-term variations, the other at similar to 116 days due either to a beating of frequencies or to a zonal pulsation mode. Conclusions. Our analysis of the CoRoT light curve and ground-based spectroscopic data of HD 181231 has led to the determination of the fundamental and pulsational parameters of the star, including beating effects. This will allow a precise seismic modelling of this star.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectral peak resolution was investigated in normal hearing (NH), hearing impaired (HI), and cochlear implant (CI) listeners. The task involved discriminating between two rippled noise stimuli in which the frequency positions of the log-spaced peaks and valleys were interchanged. The ripple spacing was varied adaptively from 0.13 to 11.31 ripples/octave, and the minimum ripple spacing at which a reversal in peak and trough positions could be detected was determined as the spectral peak resolution threshold for each listener. Spectral peak resolution was best, on average, in NH listeners, poorest in CI listeners, and intermediate for HI listeners. There was a significant relationship between spectral peak resolution and both vowel and consonant recognition in quiet across the three listener groups. The results indicate that the degree of spectral peak resolution required for accurate vowel and consonant recognition in quiet backgrounds is around 4 ripples/octave, and that spectral peak resolution poorer than around 1–2 ripples/octave may result in highly degraded speech recognition. These results suggest that efforts to improve spectral peak resolution for HI and CI users may lead to improved speech recognition

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic retinopathy, age-related macular degeneration and glaucoma are the leading causes of blindness worldwide. Automatic methods for diagnosis exist, but their performance is limited by the quality of the data. Spectral retinal images provide a significantly better representation of the colour information than common grayscale or red-green-blue retinal imaging, having the potential to improve the performance of automatic diagnosis methods. This work studies the image processing techniques required for composing spectral retinal images with accurate reflection spectra, including wavelength channel image registration, spectral and spatial calibration, illumination correction, and the estimation of depth information from image disparities. The composition of a spectral retinal image database of patients with diabetic retinopathy is described. The database includes gold standards for a number of pathologies and retinal structures, marked by two expert ophthalmologists. The diagnostic applications of the reflectance spectra are studied using supervised classifiers for lesion detection. In addition, inversion of a model of light transport is used to estimate histological parameters from the reflectance spectra. Experimental results suggest that the methods for composing, calibrating and postprocessing spectral images presented in this work can be used to improve the quality of the spectral data. The experiments on the direct and indirect use of the data show the diagnostic potential of spectral retinal data over standard retinal images. The use of spectral data could improve automatic and semi-automated diagnostics for the screening of retinal diseases, for the quantitative detection of retinal changes for follow-up, clinically relevant end-points for clinical studies and development of new therapeutic modalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, low-cost concentric capillary nebulizer (CCN) was developed and evaluated for ICP spectrometry. The CCN could be operated at sample uptake rates of 0.050-1.00 ml min'^ and under oscillating and non-oscillating conditions. Aerosol characteristics for the CCN were studied using a laser Fraunhofter diffraction analyzer. Solvent transport efficiencies and transport rates, detection limits, and short- and long-term stabilities were evaluated for the CCN with a modified cyclonic spray chamber at different sample uptake rates. The Mg II (280.2nm)/l\/lg 1(285.2nm) ratio was used for matrix effect studies. Results were compared to those with conventional nebulizers, a cross-flow nebulizer with a Scott-type spray chamber, a GemCone nebulizer with a cyclonic spray chamber, and a Meinhard TR-30-K3 concentric nebulizer with a cyclonic spray chamber. Transport efficiencies of up to 57% were obtained for the CCN. For the elements tested, short- and long-term precisions and detection limits obtained with the CCN at 0.050-0.500 ml min'^ are similar to, or better than, those obtained on the same instrument using the conventional nebulizers (at 1.0 ml min'^). The depressive and enhancement effects of easily ionizable element Na, sulfuric acid, and dodecylamine surfactant on analyte signals with the CCN are similar to, or better than, those obtained with the conventional nebulizers. However, capillary clog was observed when the sample solution with high dissolved solids was nebulized for more than 40 min. The effects of data acquisition and data processing on detection limits were studied using inductively coupled plasma-atomic emission spectrometry. The study examined the effects of different detection limit approaches, the effects of data integration modes, the effects of regression modes, the effects of the standard concentration range and the number of standards, the effects of sample uptake rate, and the effect of Integration time. All the experiments followed the same protocols. Three detection limit approaches were examined, lUPAC method, the residual standard deviation (RSD), and the signal-to-background ratio and relative standard deviation of the background (SBR-RSDB). The study demonstrated that the different approaches, the integration modes, the regression methods, and the sample uptake rates can have an effect on detection limits. The study also showed that the different approaches give different detection limits and some methods (for example, RSD) are susceptible to the quality of calibration curves. Multicomponents spectral fitting (MSF) gave the best results among these three integration modes, peak height, peak area, and MSF. Weighted least squares method showed the ability to obtain better quality calibration curves. Although an effect of the number of standards on detection limits was not observed, multiple standards are recommended because they provide more reliable calibration curves. An increase of sample uptake rate and integration time could improve detection limits. However, an improvement with increased integration time on detection limits was not observed because the auto integration mode was used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three copper(II) complexes of salicylaldehyde N(4)-phenyl thiosemicarbazone (H2L1) and two copper(II) complexes of N(4)-cyclohexyl thiosemicarbazone (H2L2) have been synthesized and characterized by different physicochemical techniques like magnetic studies and electronic, infrared and EPR spectral studies. The complexes View the MathML source and [(CuL2)2] (4) having dimeric structure. The thiosemicarbazones bind to the metal as dianionic ONS donor ligand in all the complexes, except in the complex [Cu(HL1)2] · H2O (2). In complex 2, the ligand moieties are coordinated as monoanionic (HL−) ones. Two of the complexes [CuL1dmbipy] · H2O (3) and [CuL2dmbipy] (5) have been found to possess the stoichiometry [CuLB], where B = 4,4′-dimethyl-2,2′-bipyridine (dmbipy). The coordination geometry around copper(II) in 5 is trigonal bipyramidal distorted square based pyramidal (TBDSBP), as obtained by X-ray diffraction studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is concentrated on the studies of two novel semicarbazones, di-2-pyridyl ketone-N4-phenyl-3-semicarbazone (HL1) and quinoline-2-carboxaldehyde-N4-phenyl-3-semicarbazone (HL2). The compositions of these semicarbazones were determined by the CHN analyses. For the characterization of these compounds we have used IR, UV and NMR spectral studies. The molecular structure of quinoline-2-carboxaldehyde-N4-phenyl-3- semicarbazone (HL2) was obtained by single crystal X-ray diffraction studies. Also, we have synthesized Zn(II), Cd(II), Cu(II), Ni(II), Co(II) and Mn(II) complexes of these semicarbazones, HL1 and HL2. These complexes were characterized by various spectroscopic techniques, magnetic and conductivity studies. We could isolate single crystals of some Zn(II) and Cd(II) compounds suitable for X-ray diffraction studies. For other complexes we could not isolate single crystals of good quality for single crystal X-ray diffraction studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical absorption and emission spectral studies of free and metal naphthalocyanine doped borate glass matrix are reported for the first time. Absorption spectra recorded in the UV- VIS-NIR region show the characteristic absorption bands, namely, the B-band and Q-band of the naphthalocyanine (Nc) molecule. Some of the important spectral parameters, namely, the optical absorption coefficient (α), molar extinction coefficient (ε) and absorption cross section (σa) of the principal absorption transitions are determined. Optical band gap (Eg) of the materials evaluated from the functional dependence of absorption coefficient on photon energy lies in the range 1.6 eV≤Eg≤2.1 eV. All fluorescence spectra except that of EuNc consist of an intense band in the 765 nm region corresponding to the excitation of Q-band. In EuNc the maximum fluorescence intensity band is observed at 824 nm. The intensity of the principal fluorescence band is maximum in ZnNc, whereas it is minimum in H2Nc. Radiative parameters of the principal fluorescence transitions corresponding to the Q-band excitation are also reported for the naphthalocyanine and phthalocyanine based matrices.