989 resultados para Gas cooled reactors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Work performed under Contract No. AT(04-3)-189."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Contract AT(30-1)-2789."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Contract AT(30-1)-2789."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Contract AT(30-1)-2789."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Error condition detected Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H-2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a study of the chemical reactions that may occur at the fuel- clad interfaces of fuel elements used in advanced gas-coooled reactors (A.G.R.) The initial investigation involved a study of the inner surfaces of irradiated stainless steel clad and evidence was obtained to show that fission products, in particular tellerium, were associated with reaction products on these surfaces. An accelerated rate of oxidation was observed on the inner surfaces of a failed A.G.R. fuel pin. It is believed that fission product caesium was responsible for this enhancement. A fundamental study of the reaction between 20%Cr/25%Ni/niobium stabilised stainless steel and tellerium was then undertaken over the range 350 - 850 degrees C. Reaction occurred with increasing rapidity over this range and long term exposure at ≤ 750 degrees resulted in intergranular attack of the stainless steel and chromium depletion. The reaction on unoxidised steel surfaces involved the formation of an initial iron-nickel-tellerium layer which subsequently transformed to a chromium telluride product during continued exposure. The thermodynamic stabilities of the steel tellurides were determined to be chromium telluride > nickel telluride > iron telluride. Oxidation of the stainless steel surface prior to tellerium exposure inhibited the reaction. However reaction did occur in regions where the oxide layer had either cracked or spalled.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new arrangement to achieve adequate mixing between gas and solid is described. Residence time distribution studies ensured that the behavior of this device actually approaches that of a completely mixed system. The applicability of this device in MT reactors was verified by studying the vapor phase catalytic oxidation of anthracene over vanadium pentoxide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discharge plasma-chemical hybrid process for NOinfinity removal from the flue gas emissions is an extremely effective and economical approach in comparison with the conventional selective catalytic reduction system. In this paper we bring out a relative comparison of several discharge plasma reactors from the point of NO removal efficiency. The reactors were either energized by ac or by repetitive pulses. Ferroelectric pellets were used to study the effect of pellet assisted discharges on gas cleaning. Diesel engine exhaust, at different loads; is used to approximately simulate the flue gas composition. Investigations were carried out at room temperature with respect to the variation of reaction products against the discharge power. Main emphasis is laid on the oxidation of NO to NO2, without reducing NOx concentration (i.e., minimum reaction byproducts), with least power consumption. The produced NO2 will be totally converted to N-2 and Na-2 SO4 using Na-2 SO3. The ac packed-bed reactor and pelletless pulsed corona reactor showed better performance, with minimum reaction products for a given power, when the NO concentration was low (similar to 100 ppm). When the engine load exceeds 50% (NO > 300 ppm) there was not much decrease in NO reduction and more or less all the reactors performed equally. The total operating cost of the plasma-chemical hybrid system becomes $4010/ton of NO, which is 1/3-1/5 of the conventional selective catalytic process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

pplication of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Application of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discharge plasma-chemical hybrid process for NO/sub x/ removal from the due gas emissions is an extremely effective and economical approach in comparison with the conventional selective catalytic reduction system. In this paper we bring out a relative comparison of several discharge plasma reactors from the point of NO removal efficiency. The reactors were either energized by AC or by repetitive pulses. Ferroelectric pellets were used to study the effect of pellet assisted discharges on gas cleaning. Diesel engine exhaust, at different loads, is used to approximately simulate the due gas composition. Investigations were carried out at room temperature with respect to the variation of reaction products against the discharge power. Main emphasis is laid on the oxidation of NO to NO/sub 2/, without reducing NOx concentration (i.e., minimum reaction byproducts), with least power consumption. The produced NO/sub 2/ will be totally converted to N/sub 2/ and Na/sub 2/SO/sub 4/ using Na/sub 2/SO/sub 3/. The AC packed bed reactor and pelletless pulsed corona reactor showed better performance, with minimum reaction products for a given power, when the NO concentration was low (/spl sim/100 ppm). At high engine loads (NO>300 ppm) there was not much decrease in NO/sub x/ reduction and more or less all the reactors performed equally. The paper discusses these observations in detail.