931 resultados para Galileo mission
Resumo:
Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.
Resumo:
(Document pdf contains 19 pages)
Resumo:
(Document pdf contains 22 pages)
Resumo:
The mission of the National Oceanic and Atmospheric Administration (NOAA) is to understand and predict changes in the Earth’s environment and conserve and manage coastal and marine resources to meet our nation’s economic, social and environmental needs (NOAA, 2004). In meeting its marine stewardship responsibilities, NOAA seeks to ensure the sustainable use of resources and balance competing uses of coastal and marine ecosystems, recognizing both their human and natural components (NOAA, 2004). Authorities for executing these responsibilities come from over 90 separate pieces of Federal legislation, each with unique requirements and responsibilities. Few of these laws explicitly mandate an ecosystem approach to management (EAM) or supporting science. However, resource managers, the science community, and increasingly, the public, are recognizing that significantly greater connectedness among the scientific disciplines is needed to support management and stewardship responsibilities (Browman and Stergiou, 2004; 2005). Neither NOAA nor any other science agency can meet the increasing demand for ecosystem science products addressing each of its mandates individually. Even if it was possible, doing so would not provide the integration necessary to solve the increasingly complex array of management issues. This focus on the integration of science and management responsibilities into an ecosystem view is one of the centerpieces of the U.S. Commission on Ocean Policy’s report (USCOP, 2004), and the Administration’s response to that report in the U.S. Ocean Action Plan (CEQ, 2004). (PDF contains 100 pages)
Resumo:
Technology for employability: HE case studies
Resumo:
Results of an inland fisheries and aquaculture mission in Myanmar carried out by the Department of Fisheries of Myanmar together with STREAM and NACA to evaluate and plan in the field of inland fisheries from the point of view of livelihoods from freshwater fisheries and aquaculture. (Pdf contains 22 pages)
Resumo:
This report presents the findings and recommendations of a strategic planning mission to reevaluate the feasibility of WorldFish implementing a fish value chain research program in Uganda under the CGIAR Research Program on Livestock and Fish (L&F). The over-arching goal of L&F is to increase productivity of small-scale livestock and fish systems so as to increase availability and affordability of meat, milk and fish for poor consumers and, in doing so, to reduce poverty through greater participation by the poor along animal source food value chains. This will be achieved by making a small number of carefully selected animal source food value chains function better, for example by identifying and addressing key constraints and opportunities (from production to consumption), improving institutional arrangements and capacities, and supporting the establishment of enabling pro-poor policy and institutional environments.
Resumo:
This report presents the findings and recommendations of a strategic planning mission to reevaluate the feasibility of WorldFish implementing a fish value chain research program in Uganda under the CGIAR Research Program on Livestock and Fish (L&F). The over-arching goal of L&F is to increase productivity of small-scale livestock and fish systems so as to increase availability and affordability of meat, milk and fish for poor consumers and, in doing so, to reduce poverty through greater participation by the poor along animal source food value chains. This will be achieved by making a small number of carefully selected animal source food value chains function better, for example by identifying and addressing key constraints and opportunities (from production to consumption), improving institutional arrangements and capacities, and supporting the establishment of enabling pro-poor policy and institutional environments.