994 resultados para GROUNDWATER-MANAGEMENT
Resumo:
Climate change impact on a groundwater-dependent small urban town has been investigated in the semiarid hard rock aquifer in southern India. A distributed groundwater model was used to simulate the groundwater levels in the study region for the projected future rainfall (2012-32) obtained from a general circulation model (GCM) to estimate the impacts of climate change and management practices on groundwater system. Management practices were based on the human-induced changes on the urban infrastructure such as reduced recharge from the lakes, reduced recharge from water and wastewater utility due to an operational and functioning underground drainage system, and additional water extracted by the water utility for domestic purposes. An assessment of impacts on the groundwater levels was carried out by calibrating a groundwater model using comprehensive data gathered during the period 2008-11 and then simulating the future groundwater level changes using rainfall from six GCMs Institute of Numerical Mathematics Coupled Model, version 3.0 (INM-CM. 3.0); L'Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4); Model for Interdisciplinary Research on Climate, version 3.2 (MIROC3.2); ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G); Hadley Centre Coupled Model, version 3 (HadCM3); and Hadley Centre Global Environment Model, version 1 (HadGEM1)] that were found to show good correlation to the historical rainfall in the study area. The model results for the present condition indicate that the annual average discharge (sum of pumping and natural groundwater outflow) was marginally or moderately higher at various locations than the recharge and further the recharge is aided from the recharge from the lakes. Model simulations showed that groundwater levels were vulnerable to the GCM rainfall and a scenario of moderate reduction in recharge from lakes. Hence, it is important to sustain the induced recharge from lakes by ensuring that sufficient runoff water flows to these lakes.
Resumo:
A recent Australian survey of beginning teachers indicates that issue of classroom management continues to be a key concern for early career educators (Australian Education Union, 2007). This finding is supported by the wider literature that identifies managing the classroom, particularly managing behaviour within the classroom, as critical issues for early career teachers (Arends, 2006; Charles, 2004; Groundwater-Smith, Ewing & Le Cornu, 2007). In fact, struggling to manage student behaviour and maintain positive relationships with students are among the top reasons for teachers leaving the teaching profession (Charles, 2004). So, how does a teacher effectively organise and manage up to thirty students learning and behaviour at any one time? The issue of classroom management is a persistent one for all teachers, but is particularly daunting for new teachers. Historically, classrooms were established on strong hierarchical structures that relied heavily on teacher control and authority. However, more recent approaches to managing the classroom are proactive and more collaborative. That is not to say that there exists a single management recipe, far from it. Beginning teachers must view possible approaches to managing the classroom in light of their own beliefs about teaching and learning, their current classroom practice and variables from the context in which they are teaching.
Resumo:
Effective management of groundwater requires stakeholders to have a realistic conceptual understanding of the groundwater systems and hydrological processes.However, groundwater data can be complex, confusing and often difficult for people to comprehend..A powerful way to communicate understanding of groundwater processes, complex subsurface geology and their relationships is through the use of visualisation techniques to create 3D conceptual groundwater models. In addition, the ability to animate, interrogate and interact with 3D models can encourage a higher level of understanding than static images alone. While there are increasing numbers of software tools available for developing and visualising groundwater conceptual models, these packages are often very expensive and are not readily accessible to majority people due to complexity. .The Groundwater Visualisation System (GVS) is a software framework that can be used to develop groundwater visualisation tools aimed specifically at non-technical computer users and those who are not groundwater domain experts. A primary aim of GVS is to provide management support for agencies, and enhancecommunity understanding.
Resumo:
Groundwater is increasingly recognised as an important yet vulnerable natural resource, and a key consideration in water cycle management. However, communication of sub-surface water system behaviour, as an important part of encouraging better water management, is visually difficult. Modern 3D visualisation techniques can be used to effectively communicate these complex behaviours to engage and inform community stakeholders. Most software developed for this purpose is expensive and requires specialist skills. The Groundwater Visualisation System (GVS) developed by QUT integrates a wide range of surface and sub-surface data, to produce a 3D visualisation of the behaviour, structure and connectivity of groundwater/surface water systems. Surface data (elevation, surface water, land use, vegetation and geology) and data collected from boreholes (bore locations and subsurface geology) are combined to visualise the nature, structure and connectivity of groundwater/surface water systems. Time-series data (water levels, groundwater quality, rainfall, stream flow and groundwater abstraction) is displayed as an animation within the 3D framework, or graphically, to show water system condition changes over time. GVS delivers an interactive, stand-alone 3D Visualisation product that can be used in a standard PC environment. No specialised training or modelling skills are required. The software has been used extensively in the SEQ region to inform and engage both water managers and the community alike. Examples will be given of GVS visualisations developed in areas where there have been community concerns around groundwater over-use and contamination.
Resumo:
Visualisation provides a method to efficiently convey and understand the complex nature and processes of groundwater systems. This technique has been applied to the Lockyer Valley to aid in comprehending the current condition of the system. The Lockyer Valley in southeast Queensland hosts intensive irrigated agriculture sourcing groundwater from alluvial aquifers. The valley is around 3000 km2 in area and the alluvial deposits are typically 1-3 km wide and to 20-35 m deep in the main channels, reducing in size in subcatchments. The configuration of the alluvium is of a series of elongate “fingers”. In this roughly circular valley recharge to the alluvial aquifers is largely from seasonal storm events, on the surrounding ranges. The ranges are overlain by basaltic aquifers of Tertiary age, which overall are quite transmissive. Both runoff from these ranges and infiltration into the basalts provided ephemeral flow to the streams of the valley. Throughout the valley there are over 5,000 bores extracting alluvial groundwater, plus lesser numbers extracting from underlying sandstone bedrock. Although there are approximately 2500 monitoring bores, the only regularly monitored area is the formally declared management zone in the lower one third. This zone has a calibrated Modflow model (Durick and Bleakly, 2000); a broader valley Modflow model was developed in 2002 (KBR), but did not have extensive extraction data for detailed calibration. Another Modflow model focused on a central area river confluence (Wilson, 2005) with some local production data and pumping test results. A recent subcatchment simulation model incorporates a network of bores with short-period automated hydrographic measurements (Dvoracek and Cox, 2008). The above simulation models were all based on conceptual hydrogeological models of differing scale and detail.
Resumo:
The upper Condamine River in southern Queensland has formed extensive alluvial deposits which have been used for irrigation of cotton crops for over 40 years. Due to excessive use and long term drought conditions these groundwater resources are under substantial threat. This condition is now recognised by all stakeholders, and Qld Department of Environment and Resource Management (DERM) are currently undertaking a water planning process for the Central Condamine Alluvium with water users and other stakeholders. DERM aims to effectively demonstrate the character of the groundwater system and its current status, and notably the continued long-term drawdown of the watertable. It was agreed that 3D visualisation was an ideal tool to achieve this. The Groundwater Visualisation System (GVS) developed at QUT was utilised and the visualisation model developed in conjunction with DERM to achieve a planning-management tool for this particular application
Resumo:
The low stream salinity naturally in the Nebine-Mungallala Catchment, extent of vegetation retention, relatively low rainfall and high evaporation indicates that there is a relatively low risk of rising shallow groundwater tables in the catchment. Scalding caused by wind and water erosion exposing highly saline sub-soils is a more important regional issue, such as in the Homeboin area. Local salinisation associated with evaporation of bore water from free flowing bore drains and bores is also an important land degradation issue particularly in the lower Nebine, Wallam and Mungallala Creeks. The replacement of free flowing artesian bores and bore drains with capped bores and piped water systems under the Great Artesian Basin bore rehabilitation program is addressing local salinisation and scalding in the vicinity of bore drains and preventing the discharge of saline bore water to streams. Three principles for the prevention and control of salinity in the Nebine Mungallala catchment have been identified in this review: • Avoid salinity through avoiding scalds – i.e. not exposing the near-surface salt in landscape through land degradation; • Riparian zone management: Scalding often occurs within 200m or so of watering lines. Natural drainage lines are most likely to be overstocked, and thus have potential for scalding. Scalding begins when vegetation is removed, and without that binding cover, wind and water erosion exposes the subsoil; and • Monitoring of exposed or grazed soil areas. Based on the findings of the study, we make the following recommendations: 1. Undertake a geotechnical study of existing maps and other data to help identify and target areas most at risk of rising water tables causing salinity. Selected monitoring should then be established using piezometers as an early warning system. 2. SW NRM should financially support scald reclamation activity through its various funding programs. However, for this to have any validity in the overall management of salinity risk, it is critical that such funding require the landholder to undertake a salinity hazard/risk assessment of his/her holding. 3. A staged approach to funding may be appropriate. In the first instance, it would be reasonable to commence funding some pilot scald reclamation work with a view to further developing and piloting the farm hazard/risk assessment tools, and exploring how subsequent grazing management strategies could be incorporated within other extension and management activities. Once the details of the necessary farm level activities have been more clearly defined, and following the outcomes of the geotechnical review recommended above, a more comprehensive funding package could be rolled out to priority areas. 4. We recommend that best-practice grazing management training currently on offer should be enhanced with information about salinity risk in scald-prone areas, and ways of minimising the likelihood of scald formation. 5. We recommend that course material be developed for local students in Years 6 and 7, and that arrangements be made with local schools to present this information. Given the constraints of existing syllabi, we envisage that negotiations may have to be undertaken with the Department of Education in order for this material to be permitted to be used. We have contact with key people who could help in this if required. 6. We recommend that SW NRM continue to support existing extension activities such as Grazing Land Management and the Monitoring Made Easy tools. These aids should be able to be easily expanding to incorporate techniques for monitoring, addressing and preventing salinity and scalding. At the time of writing staff of SW NRM were actively involved in this process. It is important that these activities are adequately resourced to facilitate the uptake by landholders of the perception that salinity is an issue that needs to be addressed as part of everyday management. 7. We recommend that SW NRM consider investing in the development and deployment of a scenario-modelling learning support tool as part of the awareness raising and education activities. Secondary salinity is a dynamic process that results from ongoing human activity which mobilises and/or exposes salt occurring naturally in the landscape. Time scales can be short to very long, and the benefits of management actions can similarly have immediate or very long time frames. One way to help explain the dynamics of these processes is through scenario modelling.
Resumo:
Groundwater is a major resource on Bribie Island and its sustainable management is essential to maintain the natural and modified eco-systems, as well as the human population and the integrity of the island as a sand mass. An effective numerical model is essential to enable predictions, and to test various water use and rainfall/climate scenarios. Such a numerical model must, however, be based on a representative conceptual hydrogeological model to allow incorporation of realistic controls and processes. Here we discuss the various hydrogeological models and parameters, and hydrological properties of the materials forming the island. We discuss the hydrological processes and how they can be incorporated into these models, in an integrated manner. Processes include recharge, discharge to wetlands and along the coastline, abstraction, evapotranspiration and potential seawater intrusion. The types and distributions of groundwater bores and monitoring are considered, as are scenarios for groundwater supply abstraction. Different types of numerical models and their applicability are also considered