39 resultados para GRB 970417A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

While Ras activation has been shown to play an important role in signal transduction by the T-lymphocyte antigen receptor, the mechanism of its activation in T cells is unclear. Membrane localization of the guanine nucleotide exchange factor Sos, but not Vav or Dbl, was sufficient for Ras-mediated signaling in T lymphocytes. Activation of Sos appears to involve membrane recruitment and not allosteric changes, because interaction of Sos with the linking molecule Grb-2 was not required for Ras activation. To extend this analysis, we constructed a modified Sos that could be localized to the membrane inducibly by using a rationally designed chemical inducer of dimerization, FK1012. The role of Grb-2 in signaling was mimicked with this technique, which induced the association of a modified Sos with the membrane, resulting in rapid activation of Ras-induced signaling. In contrast, inducible localization of Grb-2 to the membrane did not activate signaling and suggests that the interaction of Grb-2 with Sos in T cells is subject to regulation. This conditional allele of Sos demonstrates that membrane localization of Sos is sufficient for Ras activation in T cells and indicates that the role of Grb-2 is to realize the biologic advantages of linker-mediated dimerization: enhanced specificity and favorable kinetics for signaling. This method of generating conditional alleles may also be useful in dissecting other signal transduction pathways regulated by protein localization or protein-protein interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bibliography: p. [3]-4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

t.1. Od autora. Mąż szalony. Bitwa o chorążankę. Junakowie. Swaty na Rusi -- t.2. Kasztelanice Lubaczewscy. Murdelio -- t.3. Tradycje sanockie. Gniazdo Nieczujów. Starosta hołobucki -- t.4. Grób Nieczui -- t.5. Grób Nieczui (dokończenie). Stach z Kępy. Bajronista -- t.6. Bajronista (dokończenie). Dziwo-żona -- t.7-8. Dziwo-żona (dokończenie). Wnuczęta -- t.9. Wnuczęta (dokończenie). Kato. Bracia ślubni -- t.10-11. Bracia ślubni (dokończenie). Sodalis Marianus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At head of title, v.1-44: The Institution of Gas Engineers; v.45-55: The Gas Research Board

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lavas belonging to the Grande Ronde Formation (GRB) constitute about 63% of the Columbia River Basalt Group (CRBG), a flood basalt province in the NW United States. A puzzling feature is the lack of phenocrysts (< 5%) in these chemically evolved lavas. Based mainly on this observation it has been hypothesized that GRB lavas were nearly primary melts generated by large-scale melting of eclogite. Another recent hypothesis holds that GRB magmas were extremely hydrous and rose rapidly from the mantle such that the dissolved water kept the magmas close to their liquidi. I present new textural and chemical evidence to show that GRB lavas were neither primary nor hydrous melts but were derived from other melts via efficient fractional crystallization and mixing in shallow intrusive systems. Texture and chemical features further suggest that the melt mixing process may have been exothermic, which forced variable melting of some of the existing phenocrysts. ^ Finally, reported here are the results of efforts to simulate the higher pressure histories of GRB using COMAGMAT and MELTS softwares. The intent was to evaluate (1) whether such melts could be derived from primary melts formed by partial melting of a peridotite source as an alternative to the eclogite model, or if bulk melting of eclogite is required; and (2) at what pressure such primary melts could have been in equilibrium with the mantle. I carried out both forward and inverse modeling. The best fit forward model indicates that most primitive parent melts related to GRB could have been multiply saturated at ∼1.5--2.0 GPa. I interpret this result to indicate that the parental melts last equilibrated with a peridotitic mantle at 1.5--2.0 GPa and such partial melts rose to ∼0.2 GPa where they underwent efficient mixing and fractionation before erupting. These models suggest that the source rock was not eclogitic but a fertile spinel lherzolite, and that the melts had ∼0.5% water. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (z< 1.5) LGRBs seem to prefer particular types of environment. Our aim is to study the host galaxies of a complete sample of bright LGRBs to investigate the effect of the environment on GRB formation. Methods. We studied host galaxy spectra of the Swift/BAT6 complete sample of 14 z< 1 bright LGRBs. We used the detected nebular emission lines to measure the dust extinction, star formation rate (SFR), and nebular metallicity (Z) of the hosts and supplemented the data set with previously measured stellar masses M_*. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M_* relations) are compared to samples of field star-forming galaxies. Results. We find that LGRB hosts at z< 1 have on average lower SFRs than if they were direct star formation tracers. By directly comparing metallicity distributions of LGRB hosts and star-forming galaxies, we find a good match between the two populations up to 12 +log (O/H)~8.4−8.5, after which the paucity of metal-rich LGRB hosts becomes apparent. The LGRB host galaxies of our complete sample are consistent with the mass-metallicity relation at similar mean redshift and stellar masses. The cutoff against high metallicities (and high masses) can explain the low SFR values of LGRB hosts. We find a hint of an increased incidence of starburst galaxies in the Swift/BAT6 z< 1 sample with respect to that of a field star-forming population. Given that the SFRs are low on average, the latter is ascribed to low stellar masses. Nevertheless, the limits on the completeness and metallicity availability of current surveys, coupled with the limited number of LGRB host galaxies, prevents us from investigating more quantitatively whether the starburst incidence is such as expected after taking into account the high-metallicity aversion of LGRB host galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ɣ-ray bursts (GRBs) are the Universe's most luminous transient events. Since the discovery of GRBs was announced in 1973, efforts have been ongoing to obtain data over a broader range of the electromagnetic spectrum at the earliest possible times following the initial detection. The discovery of the theorized ``afterglow'' emission in radio through X-ray bands in the late 1990s confirmed the cosmological nature of these events. At present, GRB afterglows are among the best probes of the early Universe (z ≳ 9). In addition to informing theories about GRBs themselves, observations of afterglows probe the circum-burst medium (CBM), properties of the host galaxies and the progress of cosmic reionization. To explore the early-time variability of afterglows, I have developed a generalized analysis framework which models near-infrared (NIR), optical, ultra-violet (UV) and X-ray light curves without assuming an underlying model. These fits are then used to construct the spectral energy distribution (SED) of afterglows at arbitrary times within the observed window. Physical models are then used to explore the evolution of the SED parameter space with time. I demonstrate that this framework produces evidence of the photodestruction of dust in the CBM of GRB 120119A, similar to the findings from a previous study of this afterglow. The framework is additionally applied to the afterglows of GRB 140419A and GRB 080607. In these cases the evolution of the SEDs appears consistent with the standard fireball model. Having introduced the scientific motivations for early-time observations, I introduce the Rapid Infrared Imager-Spectrometer (RIMAS). Once commissioned on the 4.3 meter Discovery Channel Telescope (DCT), RIMAS will be used to study the afterglows of GRBs through photometric and spectroscopic observations beginning within minutes of the initial burst. The instrument will operate in the NIR, from 0.97 μm to 2.37 μm, permitting the detection of very high redshift (z ≳ 7) afterglows which are attenuated at shorter wavelengths by Lyman-ɑ absorption in the intergalactic medium (IGM). A majority of my graduate work has been spent designing and aligning RIMAS's cryogenic (~80 K) optical systems. Design efforts have included an original camera used to image the field surrounding spectroscopic slits, tolerancing and optimizing all of the instrument's optics, thermal modeling of optomechanical systems, and modeling the diffraction efficiencies for some of the dispersive elements. To align the cryogenic optics, I developed a procedure that was successfully used for a majority of the instrument's sub-assemblies. My work on this cryogenic instrument has necessitated experimental and computational projects to design and validate designs of several subsystems. Two of these projects describe simple and effective measurements of optomechanical components in vacuum and at cryogenic temperatures using an 8-bit CCD camera. Models of heat transfer via electrical harnesses used to provide current to motors located within the cryostat are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of observed ultra-high energy cosmic rays (UHECRs, energies in excess of $10^{18.5}$ eV) remains unknown, as extragalactic magnetic fields deflect these charged particles from their true origin. Interactions of these UHECRs at their source would invariably produce high energy neutrinos. As these neutrinos are chargeless and nearly massless, their propagation through the universe is unimpeded and their detection can be correlated with the origin of UHECRs. Gamma-ray bursts (GRBs) are one of the few possible origins for UHECRs, observed as short, immensely bright outbursts of gamma-rays at cosmological distances. The energy density of GRBs in the universe is capable of explaining the measured UHECR flux, making them promising UHECR sources. Interactions between UHECRs and the prompt gamma-ray emission of a GRB would produce neutrinos that would be detected in coincidence with the GRB’s gamma-ray emission. The IceCube Neutrino Observatory can be used to search for these neutrinos in coincidence with GRBs, detecting neutrinos through the Cherenkov radiation emitted by secondary charged particles produced in neutrino interactions in the South Pole glacial ice. Restricting these searches to be in coincidence with GRB gamma-ray emis- sion, analyses can be performed with very little atmospheric background. Previous searches have focused on detecting muon tracks from muon neutrino interactions fromthe Northern Hemisphere, where the Earth shields IceCube’s primary background of atmospheric muons, or spherical cascade events from neutrinos of all flavors from the entire sky, with no compelling neutrino signal found. Neutrino searches from GRBs with IceCube have been extended to a search for muon tracks in the Southern Hemisphere in coincidence with 664 GRBs over five years of IceCube data in this dissertation. Though this region of the sky contains IceCube’s primary background of atmospheric muons, it is also where IceCube is most sensitive to neutrinos at the very highest energies as Earth absorption in the Northern Hemisphere becomes relevant. As previous neutrino searches have strongly constrained neutrino production in GRBs, a new per-GRB analysis is introduced for the first time to discover neutrinos in coincidence with possibly rare neutrino-bright GRBs. A stacked analysis is also performed to discover a weak neutrino signal distributed over many GRBs. Results of this search are found to be consistent with atmospheric muon backgrounds. Combining this result with previously published searches for muon neutrino tracks in the Northern Hemisphere, cascade event searches over the entire sky, and an extension of the Northern Hemisphere track search in three additional years of IceCube data that is consistent with atmospheric backgrounds, the most stringent limits yet can be placed on prompt neutrino production in GRBs, which increasingly disfavor GRBs as primary sources of UHECRs in current GRB models.