974 resultados para GRAM-POSITIVE BACTERIA
Resumo:
A synthetic version of the metal-regulated gene A (mrgA) promoter from Bacillus subtilis, which in this Gram-positive bacterium is negatively regulated by manganese, iron, cobalt, or copper turned out to promote high level of basal gene expression that is further enhanced by Co(II), Cd(II), Mn(II), Zn(II), Cu(II), or Ni(II), when cloned in the Gram-negative bacterium Cupriavidus metallidurans. Promoter activity was monitored by expression of the reporter gene coding for the enhanced green fluorescent protein (EGFP), and cellular intensity fluorescence was quantified by flow cytometry. Expression levels in C. metallidurans driven by the heterologous promoter, here called pan, ranged from 20- to 53-fold the expression level driven by the Escherichia coli lac promoter (which is constitutively expressed in C. metallidurans), whether in the absence or presence of metal ions, respectively. The pan promoter did also function in E. coli in a constitutive pattern, regardless of the presence of Mn(II) or Fe(II). In conclusion, the pan promoter proved to be a powerful tool to express heterologous proteins in Gram-negative bacteria, especially in C. metallidurans grown upon high levels of toxic metals, with potential applications in bioremediation. Biotechnol. Bioeng. 2010; 107: 469-477. (C) 2010 Wiley Periodicals, Inc.
Resumo:
The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.
Resumo:
Purpose: Infections caused by AmpC-positive bacteria results in high patient morbidity and mortality making their detection clinically important as they cannot be detected in routine susceptibility testing. This study aim to determine the prevalence of AmpC β-lactamase among Gram negative bacteria recovered from clinical specimens in Benin City, Nigeria. Methods: A total of 256 consecutive and non-repetitive Gram negative bacteria were recovered from various clinical specimens. The prevalence of AmpC β-lactamase was determined using a combination of disc antagonism test and cefoxitin-cloxacillin inhibition test. Disc susceptibility test was performed on all isolates using standard techniques. Results: Cefoxitin-cloxacillin inhibition test detected more AmpC β-lactamase than other tests. The prevalence of AmpC β-lactamase did not differ significantly between both genders and between inpatients and out-patients (p>0.05). Isolates recovered from sputum had significantly higher prevalence of AmpC β-lactamase producers compared with isolates from other clinical specimens (p=0.0484). The prevalence of AmpC production was significantly higher among isolates of Pseudomonas aeruginosa than other isolates (p = 0.0085). Isolates that produced AmpC β-lactamase were more susceptible to the test cephalosoprins. Conclusion: An overall prevalence of AmpC β-lactamase (15.23 %) was observed in this study. Pseudomonas aeruginosa was the most prevalent producer of AmpC enzymes. Prudent use of antibiotics is advocated.
Resumo:
Pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite produced by a narrow range of Gram-negative bacteria. The PRN biosynthesis by rhizobacteria presumably has a key role in their life strategies and in the biocontrol of plant diseases. The biosynthetic operon that encodes the pathway that converts tryptophan to PRN is composed of four genes, prnA through D, whose diversity, genomic context and spread over bacterial genomes are poorly understood. Therefore, we launched an endeavour aimed at retrieving, by in vitro and in silico means, diverse bacteria carrying the prnABCD biosynthetic loci in their genomes. Analysis of polymorphisms of the prnD gene sequences revealed a high level of conservation between Burkholderia, Pseudomonas and Serratia spp. derived sequences. Whole-operon- and prnD-based phylogeny resulted in tree topologies that are incongruent with the taxonomic status of the evaluated strains as predicted by 16S rRNA gene phylogeny. The genomic composition of c. 20 kb DNA fragments containg the PRN operon varied in different strains. Highly conserved and distinct transposase-encoding genes surrounding the PRN biosynthetic operons of Burkholderia pseudomallei strains were found. A prnABCD-deprived genomic region in B. pseudomallei strain K96243 contained the same gene composition as, and shared high homology with, the flanking regions of the PRN operon in B. pseudomallei strains 668, 1106a and 1710b. Our results strongly suggest that the PRN biosynthetic operon is mobile. The extent, frequency and promiscuity of this mobility remain to be understood.
Resumo:
In recent years there has been a dramatic increase in reports of glycosylation of proteins in various Gram-negative systems including Neisseria meningitidis, Neisseria gonorrhoeae, Campylobacter jejuni, Pseudomonas aeruginosa, Escherichia coli, Caulobacter crescentus, Aeromonas caviae and Helicobacter pylori. Although this growing list contains many important pathogens (reviewed by Benz and Schmidt [Mol. Microbiol. 45 (2002) 267-276]) and the glycosylations are found on proteins important in pathogenesis such as pili, adhesins and flagella the precise role(s) of the glycosylation of these proteins remains to be determined. Furthermore, the details of the glycosylation biosynthetic process have not been determined in any of these systems. The definition of the precise role of glycosylation and the mechanism of biosynthesis will be facilitated by a detailed understanding of the genes involved. (C) 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Baccharis trimera (Less.) (Asteraceae), popularly know as "carqueja", is a species commonly used in folk medicine for the treatment or prevention of diseases. In this context, the purpose of this work was to study the antibacterial activity of crude hydroalcoholic extract from Baccharis trimera against Gram-positive bacterial strains (Staphylococcus aureus ATCC 29213, Staphylococcus saprophyticus ATCC 15305, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 19433) and Gram-negative bacteria (Escherichia coli EHEC ATCC 43895, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27736, Salmonella typhi ATCC 19430) of clinical interest. Antibacterial susceptibility was evaluated by broth microdilution assay following the CLSI (formerly the NCCLS) guidelines. The extract from B. trimera showed antibacterial activity against Gram-positive bacteria and the most interesting result was obtained against S. epidermidis that presented Minimal Inhibitory Concentration of 250μg/mL. These results indicate that B. trimera have bacterisostatic potential against Gram-positive bacterial strains of medical interest and could serve as a base for further studies on the use of isolated compounds from this species as future antimicrobials.
Resumo:
J Biol Inorg Chem (2011) 16:51–61 DOI 10.1007/s00775-010-0700-8
Resumo:
Introduction Acinetobacter baumannii has attained an alarming level of resistance to antibacterial drugs. Clinicians are now considering the use of older agents or unorthodox combinations of licensed drugs against multidrug-resistant strains to bridge the current treatment gap. We investigated the in vitro activities of combination treatments that included colistin with vancomycin, norvancomycin or linezolid against multidrug-resistant Acinetobacter baumannii. Methods The fractional inhibitory concentration index and time-kill assays were used to explore the combined effects of colistin with vancomycin, norvancomycin or linezolid against 40 clinical isolates of multidrug-resistant Acinetobacter baumannii. Transmission electron microscopy was performed to evaluate the interactions in response to the combination of colistin and vancomycin. Results The minimum inhibitory concentrations (MICs) of vancomycin and norvancomycin for half of the isolates decreased below the susceptibility break point, and the MIC of linezolid for one isolate was decreased to the blood and epithelial lining fluid concentration using the current dosing regimen. When vancomycin or norvancomycin was combined with subinhibitory doses of colistin, the multidrug-resistant Acinetobacter baumannii test samples were eradicated. Transmission electron microscopy revealed that subinhibitory doses of colistin were able to disrupt the outer membrane, facilitating a disruption of the cell wall and leading to cell lysis. Conclusions Subinhibitory doses of colistin significantly enhanced the antibacterial activity of vancomycin, norvancomycin, and linezolid against multidrug-resistant Acinetobacter baumannii.
Resumo:
ABSTRACTINTRODUCTION: Monte Carlo simulations have been used for selecting optimal antibiotic regimens for treatment of bacterial infections. The aim of this study was to assess the pharmacokinetic and pharmacodynamic target attainment of intravenous β-lactam regimens commonly used to treat bloodstream infections (BSIs) caused by Gram-negative rod-shaped organisms in a Brazilian teaching hospital.METHODS: In total, 5,000 patients were included in the Monte Carlo simulations of distinct antimicrobial regimens to estimate the likelihood of achieving free drug concentrations above the minimum inhibitory concentration (MIC; fT > MIC) for the requisite periods to clear distinct target organisms. Microbiological data were obtained from blood culture isolates harvested in our hospital from 2008 to 2010.RESULTS: In total, 614 bacterial isolates, including Escherichia coli, Enterobacterspp., Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, were analyzed Piperacillin/tazobactam failed to achieve a cumulative fraction of response (CFR) > 90% for any of the isolates. While standard dosing (short infusion) of β-lactams achieved target attainment for BSIs caused by E. coliand Enterobacterspp., pharmacodynamic target attainment against K. pneumoniaeisolates was only achieved with ceftazidime and meropenem (prolonged infusion). Lastly, only prolonged infusion of high-dose meropenem approached an ideal CFR against P. aeruginosa; however, no antimicrobial regimen achieved an ideal CFR against A. baumannii.CONCLUSIONS:These data reinforce the use of prolonged infusions of high-dose β-lactam antimicrobials as a reasonable strategy for the treatment of BSIs caused by multidrug resistant Gram-negative bacteria in Brazil.
Resumo:
The occurrence of mycotoxigenic moulds such as Aspergillus, Penicillium and Fusarium in food and feed has an important impact on public health, by the appearance of acute and chronic mycotoxicoses in humans and animals, which is more severe in the developing countries due to lack of food security, poverty and malnutrition. This mould contamination also constitutes a major economic problem due the lost of crop production. A great variety of filamentous fungi is able to produce highly toxic secondary metabolites known as mycotoxins. Most of the mycotoxins are carcinogenic, mutagenic, neurotoxic and immunosuppressive, being ochratoxin A (OTA) one of the most important. OTA is toxic to animals and humans, mainly due to its nephrotoxic properties. Several approaches have been developed for decontamination of mycotoxins in foods, such as, prevention of contamination, biodegradation of mycotoxins-containing food and feed with microorganisms or enzymes and inhibition or absorption of mycotoxin content of consumed food into the digestive tract. Some group of Gram-positive bacteria named lactic acid bacteria (LAB) are able to release some molecules that can influence the mould growth, improving the shelf life of many fermented products and reducing health risks due to exposure to mycotoxins. Some LAB are capable of mycotoxin detoxification. Recently our group was the first to describe the ability of LAB strains to biodegrade OTA, more specifically, Pediococcus parvulus strains isolated from Douro wines. The pathway of this biodegradation was identified previously in other microorganisms. OTA can be degraded through the hydrolysis of the amide bond that links the L-β-phenylalanine molecule to the ochratoxin alpha (OTα) a non toxic compound. It is known that some peptidases from different origins can mediate the hydrolysis reaction like, carboxypeptidase A an enzyme from the bovine pancreas, a commercial lipase and several commercial proteases. So, we wanted to have a better understanding of this OTA degradation process when LAB are involved and identify which molecules where present in this process. For achieving our aim we used some bioinformatics tools (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV). We also designed specific primers and realized gene specific PCR. The template DNA used came from LAB strains samples of our previous work, and other DNA LAB strains isolated from elderberry fruit, silage, milk and sausages. Through the employment of bioinformatics tools it was possible to identify several proteins belonging to the carboxypeptidase family that participate in the process of OTA degradation, such as serine type D-Ala-D-Ala carboxypeptidase and membrane carboxypeptidase. In conclusions, this work has identified carboxypeptidase proteins being one of the molecules present in the OTA degradation process when LAB are involved.
Resumo:
Animals (122 mice) were infected each with eighty cercariae of S. mansoni and subsequently challenged intravenously eight weeks later with the following gram-negative organisms. S. typhi, E. coli, Klebsiella-enterobacter species, Proteus mirabilis and Pseudomonas aeruginosa. Enumeration of bacteria in the liver, spleen and blood and S. mansoni from the portal sistem was performed from one to four weeks later in infected animals. A significant difference between infection produced by S. typhi and other gram negative organisms was observed: S. typhi persisted longer in the spleen and liver and could be recovered from S. mansoni worms up to three weeks following bacterial infection. Other gram negative bacteria disappeared from S. mansoni worms after two weeks of initial challenge. Additional animals (51 mice) infected with S. mansoni were given S. typhi, E. coli or sterile saline. After two weeks, animals were sacrificed and the recovery rate of worms from the portal system, and the mesenteric and hepatic oogram were determined. in animals infected with E. coli a significant decrease in the number of worms was observed compared to the saline control group; thirty worms were recovered in the control group compared to two worms in e. coli infected animals. In addition, the patterns of oviposition was significantly different in these latter animals suggesting complete inhibition of this process. Following S. typhi infection the difference in recovery of worms and pattern of oviposition was minimal. These findings suggest a difference in the interaction of various gram negative bacteria and S. mansoni and are consistent with the clinical observation of prolonged salmonella bacteremia in patients with schistosomiasis.
Resumo:
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Resumo:
Multi-resistant gram-negative rods are important pathogens in intensive care units (ICU), cause high rates of mortality, and need infection control measures to avoid spread to another patients. This study was undertaken prospectively with all of the patients hospitalized at ICU, Anesthesiology of the Hospital São Paulo, using the ICU component of the National Nosocomial Infection Surveillance System (NNIS) methodology, between March 1, 1997 and June 30, 1998. Hospital infections occurring during the first three months after the establishment of prevention and control measures (3/1/97 to 5/31/97) were compared to those of the last three months (3/1/98 to 5/31/98). In this period, 933 NNIS patients were studied, with 139 during the first period and 211 in the second period. The overall rates of infection by multi-resistant microorganisms in the first and second periods were, respectively, urinary tract infection: 3.28/1000 patients/day; 2.5/1000 patients/day; pneumonia: 2.10/1000 patients/day; 5.0/1000 patients/day; bloodstream infection: 1.09/1000 patients/day; 2.5/1000 patients/day. A comparison between overall infection rates of both periods (Wilcoxon test) showed no statistical significance (p = 0.067). The use of intervention measures effectively decreased the hospital bloodstream infection rate (p < 0.001), which shows that control measures in ICU can contribute to preventing hospital infections.
Resumo:
We applied MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing) to directly analyze the bacilli present in 61 stain-positive specimens from tuberculosis patients. A complete MIRU type (24 loci) was obtained for all but one (no amplification in one locus) of the specimens (98.4%), and the allelic values fully correlated with those obtained from the corresponding cultures. Our study is the first to demonstrate that real-time genotyping of Mycobacterium tuberculosis can be achieved, fully transforming the way in which molecular epidemiology techniques can be integrated into control programs.
Resumo:
The sensor kinase GacS and the response regulator GacA are members of a two-component system that is present in a wide variety of gram-negative bacteria and has been studied mainly in enteric bacteria and fluorescent pseudomonads. The GacS/GacA system controls the production of secondary metabolites and extracellular enzymes involved in pathogenicity to plants and animals, biocontrol of soilborne plant diseases, ecological fitness, or tolerance to stress. A current model proposes that GacS senses a still-unknown signal and activates, via a phosphorelay mechanism, the GacA transcription regulator, which in turn triggers the expression of target genes. The GacS protein belongs to the unorthodox sensor kinases, characterized by an autophosphorylation, a receiver, and an output domain. The periplasmic loop domain of GacS is poorly conserved in diverse bacteria. Thus, a common signal interacting with this domain would be unexpected. Based on a comparison with the transcriptional regulator NarL, a secondary structure can be predicted for the GacA sensor kinases. Certain genes whose expression is regulated by the GacS/GacA system are regulated in parallel by the small RNA binding protein RsmA (CsrA) at a posttranscriptional level. It is suggested that the GacS/GacA system operates a switch between primary and secondary metabolism, with a major involvement of posttranscriptional control mechanisms.