939 resultados para GLOBULAR CLUSTERS: INDIVIDUAL: SEGUE 3
Resumo:
This Ph.D. Thesis has been carried out in the framework of a long-term and large project devoted to describe the main photometric, chemical, evolutionary and integrated properties of a representative sample of Large and Small Magellanic Cloud (LMC and SMC respectively) clusters. The globular clusters system of these two Irregular galaxies provides a rich resource for investigating stellar and chemical evolution and to obtain a detailed view of the star formation history and chemical enrichment of the Clouds. The results discussed here are based on the analysis of high-resolution photometric and spectroscopic datasets obtained by using the last generation of imagers and spectrographs. The principal aims of this project are summarized as follows: • The study of the AGB and RGB sequences in a sample of MC clusters, through the analysis of a wide near-infrared photometric database, including 33 Magellanic globulars obtained in three observing runs with the near-infrared camera SOFI@NTT (ESO, La Silla). • The study of the chemical properties of a sample of MCs clusters, by using optical and near-infrared high-resolution spectra. 3 observing runs have been secured to our group to observe 9 LMC clusters (with ages between 100 Myr and 13 Gyr) with the optical high-resolution spectrograph FLAMES@VLT (ESO, Paranal) and 4 very young (<30 Myr) clusters (3 in the LMC and 1 in the SMC) with the near-infrared high-resolution spectrograph CRIRES@VLT. • The study of the photometric properties of the main evolutive sequences in optical Color- Magnitude Diagrams (CMD) obtained by using HST archive data, with the final aim of dating several clusters via the comparison between the observed CMDs and theoretical isochrones. The determination of the age of a stellar population requires an accurate measure of the Main Sequence (MS) Turn-Off (TO) luminosity and the knowledge of the distance modulus, reddening and overall metallicity. For this purpose, we limited the study of the age just to the clusters already observed with high-resolution spectroscopy, in order to date only clusters with accurate estimates of the overall metallicity.
Resumo:
We present BVI photometry of 190 galaxies in the central 4 x 3 deg(2) region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities. In this paper, we investigate the surface brightness-magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness-magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec(-2), it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness-magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation. B-V and V-I colours are determined for a sample of 113 cluster galaxies and the colour-magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour-magnitude relation. Their mean V - I colours (similar to1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour-magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.
Resumo:
Globular clusters (GCs) are traditionally described as simple quasi-relaxed non-rotating stellar systems, characterized by spherical symmetry and isotropy in velocity space. However, recent studies have shown deviations from isotropic velocity distributions and significant internal rotation in many GCs, suggesting that their internal structure and kinematics are more complex than previously thought. The aim of this thesis is to investigate the internal kinematics of Galactic Globular Clusters (GGCs) as part of the Multi-Instrument Kinematic Survey (MIKiS), which exploits the capabilities of different ESO-VLT spectrographs to obtain comprehensive velocity dispersion (VD) and rotation profiles of GGCs. Moreover, this thesis has the particular goal of unraveling the kinematics of GC cores, which are still largely unexplored, by taking advantage of the exceptional spatial resolution of the adaptive-optics assisted integral-field spectrograph MUSE/NFM. The thesis presents a thorough kinematic study of three GGCs NGC 1904, NGC 6440, and NGC 6569. By combining the data sets acquired with four different spectrographs, we obtained the radial velocity (RV) of more than 1000 individual stars in each cluster, sampling from the innermost to the outermost regions. This allowed us to obtain the entire VD profile of each cluster and exclude the presence of an intermediate-mass black hole in the core of NGC 1904, at odds with previous findings obtained from integrated-light spectra. The studies also revealed signatures of internal rotation in each of the GCs studied. These results, supported by those of N-body simulations, prove that GCs were born with a significant initial rotation that they gradually lost through internal two-body relaxation and angular momentum loss carried away by escaping stars. Furthermore, we derived the structural parameters of NGC 6440 and NGC 6569, obtaining a comprehensive overview of the internal kinematics and structure of these GCs, which is necessary to properly reconstruct the evolutionary history of these systems.
Resumo:
Context. The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. Aims. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick disk and halo giants to establish the chemical differences and similarities between the various populations. Methods. High-resolution infrared spectra of 19 bulge giants and 49 comparison giants in the solar neighborhood were acquired with Gemini/Phoenix. All stars have similar stellar parameters but cover a broad range in metallicity. A standard 1D local thermodynamic equilibrium analysis yielded the abundances of C, N, O and Fe. A homogeneous and differential analysis of the bulge, halo, thin disk and thick disk stars ensured that systematic errors were minimized. Results. We confirm the well-established differences for [O/Fe] (at a given metallicity) between the local thin and thick disks. For the elements investigated, we find no chemical distinction between the bulge and the local thick disk, which is in contrast to previous studies relying on literature values for disk dwarf stars in the solar neighborhood. Conclusions. Our findings suggest that the bulge and local thick disk experienced similar, but not necessarily shared, chemical evolution histories. We argue that their formation timescales, star formation rates and initial mass functions were similar.
Resumo:
We use multiwavelength data (H I, FUV, NUV, R) to search for evidence of star formation in the intragroup medium of the Hickson Compact Group 100. We find that young star-forming regions are located in the intergalactic H I clouds of the compact group which extend to over 130 kpc away from the main galaxies. A tidal dwarf galaxy (TDG) candidate is located in the densest region of the H I tail, 61 kpc from the brightest group member and its age is estimated to be only 3.3 Myr. Fifteen other intragroup H II regions and TDG candidates are detected in the Galaxy Evolution Explorer (GALEX) FUV image and within a field 10' x 10' encompassing the H I tail. They have ages <200 Myr, H I masses of 10(9.2-10.4) M(circle dot), 0.001
Resumo:
As a part of our galaxy-cluster redshift survey, we present a set of 79 new velocities in the 4 clusters Abell 376, Abell 970, Abell 1356, and Abell 2244, obtained at Haute-Provence observatory. This set now completes our previous analyses, especially for the first two clusters. Data on individual galaxies are presented, and we discuss some cluster properties. For A376, we obtained an improved mean redshift (z) over bar = 0.04750 with a velocity dispersion of sigma(V) = 860 km s(-1). For A970, we have (z) over bar = 0.05875 with sigma(V) = 881 km s(-1). We show that the A1356 cluster is not a member of the ""Leo-Virgo"" supercluster at a mean redshift (z) over bar = 0.112 and should be considered just as a foreground group of galaxies at (z) over bar = 0.0689, as well as A1435 at (z) over bar = 0.062. We obtain (z) over bar = 0.09962 for A2244 with sigma(V) = 965 km s(-1). The relative proximity of clusters A2244 and A2245 ((z) over bar = 0.08738, sigma(V) = 992 km s(-1)) suggests that these could be members of a supercluster that would include A2249; however, from X-ray data there is no indication of interaction between A2244 and A2245.
Resumo:
Context. It is debated whether the Milky Way bulge has characteristics more similar to those of a classical bulge than those of a pseudobulge. Detailed abundance studies of bulge stars are important when investigating the origin, history, and classification of the bulge. These studies provide constraints on the star-formation history, initial mass function, and differences between stellar populations. Not many similar studies have been completed because of the large distance and high variable visual extinction along the line-of-sight towards the bulge. Therefore, near-IR investigations can provide superior results. Aims. To investigate the origin of the bulge and study its chemical abundances determined from near-IR spectra for bulge giants that have already been investigated with optical spectra. The optical spectra also provide the stellar parameters that are very important to the present study. In particular, the important CNO elements are determined more accurately in the near-IR. Oxygen and other alpha elements are important for investigating the star-formation history. The C and N abundances are important for determining the evolutionary stage of the giants and the origin of C in the bulge. Methods. High-resolution, near-infrared spectra in the H band were recorded using the CRIRES spectrometer mounted on the Very Large Telescope. The CNO abundances are determined from the numerous molecular lines in the wavelength range observed. Abundances of the alpha elements Si, S, and Ti are also determined from the near-IR spectra. Results. The abundance ratios [O/Fe], [Si/Fe], and [S/Fe] are enhanced to metallicities of at least [Fe/H] = -0.3, after which they decline. This suggests that the Milky Way bulge experienced a rapid and early burst of star formation similar to that of a classical bulge. However, a similarity between the bulge trend and the trend of the local thick disk seems to be present. This similarity suggests that the bulge could have had a pseudobulge origin. The C and N abundances suggest that our giants are first-ascent red-giants or clump stars, and that the measured oxygen abundances are those with which the stars were born. Our [C/Fe] trend does not show any increase with [Fe/H], which is expected if W-R stars contributed substantially to the C abundances. No ""cosmic scatter"" can be traced around our observed abundance trends: the measured scatter is expected, given the observational uncertainties.
Resumo:
Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars, being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.
Resumo:
We present the first dynamical analysis of a galaxy cluster to include a large fraction of dwarf galaxies. Our sample of 108 Fornax Cluster members measured with the UK Schmidt Telescope FLAIR-II spectrograph contains 55 dwarf galaxies (15.5 > b(j) > 18.0 or -16 > M-B > -13.5). H alpha emission shows that of the dwarfs are star forming, twice the fraction implied by morphological classifications. The total sample has a mean velocity of 1493 +/- 36 kms s(-1) and a velocity dispersion of 374 +/- 26 km s(-1). The dwarf galaxies form a distinct population: their velocity dispersion (429 +/- 41 km s(-1)) is larger than that of the giants () at the 98% confidence level. This suggests that the dwarf population is dominated by infalling objects whereas the giants are virialized. The Fornax system has two components, the main Fornax Cluster centered on NGC 1399 with cz = 1478 km s(-1) and sigma (cz) = 370 km s(-1) and a subcluster centered 3 degrees to the southwest including NGC 1316 with cz = 1583 km s(-1) and sigma (cz) = 377 km s(-1). This partition is preferred over a single cluster at the 99% confidence level. The subcluster, a site of intense star formation, is bound to Fornax and probably infalling toward the cluster core for the first time. We discuss the implications of this substructure for distance estimates of the Fornax Cluster. We determine the cluster mass profile using the method of Diaferio, which does not assume a virialized sample. The mass within a projected radius of 1.4 Mpc is (7 +/- 2) x 10(13) M-., and the mass-to-light ratio is 300 +/- 100 M-./L-.. The mass is consistent with values derived from the projected mass virial estimator and X-ray measurements at smaller radii.
Resumo:
We describe a search for compact dwarf galaxies in the Fornax cluster using the FLAIR spectrograph on the UK Schmidt Telescope. We measured radial velocities of 453 compact galaxies brighter than B-T approximate to 17.3 and found seven new compact dwarf cluster members that were not classified in previous surveys as members of the cluster. These are amongst the most compact, high surface brightness dwarf galaxies known. The inclusion of these galaxies in the cluster does not change the total luminosity function significantly, but they are important because of their extreme nature; one in particular appears to be a dwarf spiral. Three of the new dwarfs have strong emission lines and we identify them as blue compact dwarfs (BCDs), doubling the number of confirmed BCDs in the cluster. We also determined that none of the compact dwarf elliptical (M32-like) candidates is in the cluster, down to an absolute magnitude M-B = -13.2. We have investigated the claim of Irwin et al. that there is no strong relation between surface brightness and magnitude for the cluster members and find some support for this for the brighter galaxies (B-T < 17.3), but fainter galaxies still need to be measured.
Resumo:
We describe a population of compact objects in the centre of the Fornax Cluster which were discovered as part of our 2dF Fornax Spectroscopic Survey. These objects have spectra typical of old stellar systems, but are unresolved on photographic sky survey plates. They have absolute magnitudes - 13 < M-B
Resumo:
The Fornax Cluster Spectroscopic Survey (FCSS) project utilizes the Two-degree Field (2dF) multi-object spectrograph on the Anglo-Australian Telescope (AAT). Its aim is to obtain spectra for a complete sample of all 14 000 objects with 16 5 less than or equal to b(j) less than or equal to 19 7 irrespective of their morphology in a 12 deg(2) area centred on the Fornax cluster. A sample of 24 Fornax cluster members has been identified from the first 2dF field (3.1 deg(2) in area) to be completed. This is the first complete sample of cluster objects of known distance with well-defined selection limits. Nineteen of the galaxies (with -15.8 < M-B < 12.7) appear to be conventional dwarf elliptical (dE) or dwarf S0 (dS0) galaxies. The other five objects (with -13.6 < M-B < 11.3) are those galaxies which were described recently by Drinkwater et al. and labelled 'ultracompact dwarfs' (UCDs). A major result is that the conventional dwarfs all have scale sizes alpha greater than or similar to 3 arcsec (similar or equal to300 pc). This apparent minimum scale size implies an equivalent minimum luminosity for a dwarf of a given surface brightness. This produces a limit on their distribution in the magnitude-surface brightness plane, such that we do not observe dEs with high surface brightnesses but faint absolute magnitudes. Above this observed minimum scale size of 3 arcsec, the dEs and dS0s fill the whole area of the magnitude-surface brightness plane sampled by our selection limits. The observed correlation between magnitude and surface brightness noted by several recent studies of brighter galaxies is not seen with our fainter cluster sample. A comparison of our results with the Fornax Cluster Catalog (FCC) of Ferguson illustrates that attempts to determine cluster membership solely on the basis of observed morphology can produce significant errors. The FCC identified 17 of the 24 FCSS sample (i.e. 71 per cent) as being 'cluster' members, in particular missing all five of the UCDs. The FCC also suffers from significant contamination: within the FCSS's field and selection limits, 23 per cent of those objects described as cluster members by the FCC are shown by the FCSS to be background objects.
Resumo:
Liver-stage antigen 3 (LSA-3) is a new vaccine candidate that can induce protection against Plasmodium falciparum sporozoite challenge. Using a series of long synthetic peptides (LSP) encompassing most of the 210-kDa LSA-3 protein, a study of the antigenicity of this protein was carried out in 203 inhabitants from the villages of Dielmo (n = 143) and Ndiop (n = 60) in Senegal (the level of malaria transmission differs in these two villages). Lymphocyte responses to each individual LSA-3 peptide were recorded, some at high prevalences (up to 43%). Antibodies were also detected to each of the 20 peptides, many at high prevalence (up to 84% of responders), and were directed to both nonrepeat and repeat regions. Immune responses to LSA-3 were detectable even in individuals of less than 5 years of age and increased with age and hence exposure to malaria, although they were not directly related to the level of malaria transmission. Thus, several valuable T- and B-cell epitopes were characterized all along the LSA-3 protein, supporting the antigenicity of this P. falciparum vaccine candidate. Finally, antibodies specific for peptide LSP10 located in a nonrepeat region of LSA-3 were found significantly associated with a lower risk of malaria attack over 1 year of daily clinical follow-up in children between the ages of 7 and 15 years, but not in older individuals.
Resumo:
BACKGROUND: The counting of poorly differentiated clusters of 5 or more cancer cells lacking a gland-like structure in a tumor mass has recently been identified among the histological features predictive of poor prognosis in colorectal cancer. MAIN BODY: Poorly differentiated clusters can easily be recognized in the histological sections of colorectal cancer routinely stained with haematoxylin and eosin. Despite some limitations related to specimen fragmentation, counting can also be assessed in endoscopic biopsies. Based on the number of poorly differentiated clusters that appear under a microscopic field of a ×20 objective lens (i.e., a microscopic field with a major axis of 1 mm), colorectal cancer can be graded into malignancies as follows: tumors with <5 clusters as grade 1, tumors with 5 to 9 clusters as grade 2, and tumors with ≥10 clusters as grade 3. High poorly differentiated cluster counts are significantly associated with peri-neural and lympho-vascular invasion, the presence of nodal metastases or micrometastases, as well as shorter overall and progression free survival to colorectal cancer. CONCLUSION: The morphological aspects and clinical relevance of poorly differentiated clusters counting in colorectal cancer are discussed in this review.
Resumo:
The environment where galaxies are found heavily influences their evolution. Close groupings, like the ones in the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi-wavelength study of Hickson Compact Group 7 (HCG 7), consisting of four giant galaxies: three spirals and one lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMCs) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GCs) but no detectable clusters with ages less than a few Gyr. The spatial and approximate age distributions of the similar to 300 YMCs and similar to 150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intragroup medium (IGM). We do not, however, detect the IGM in H I or Chandra X-ray observations, signatures that would be expected to arise from major mergers. Despite this fact, we find that the H I gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields a single dwarf elliptical galaxy in an apparent stellar tidal feature. Based on all this information, we suggest an evolutionary scenario for HCG 7, whereby the galaxies convert most of their available gas into stars without the influence of major mergers and ultimately result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z similar to 1-2.