988 resultados para GLASS-PH-ELECTRODE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The depth variations in the major chemical components dissolved in interstitial waters from the Tonga margin (ODP Site 841) are much more pronounced than those usually observed in deep-sea sediments. The extensive alteration of volcanic Miocene sediments to secondary minerals such as analcime, clays, and thaumasite forms a CaCl2-rich brine. The brine results from a high exchange of Ca to Na, K, and Mg and an increase in Cl concentrations due to removal of H2O from the fluid during the authigenesis of hydrous minerals. The formation of thaumasite could have partly controlled the concentration of dissolved SO4, HCO3, and Ca in the Miocene sediments. The strontium isotopic signature of the interstitial water suggests that alteration of the volcanic Miocene sediments occurred a long time after sedimentation. A transient diffusion model indicates that molecular diffusion was not prevented by lithologic barriers and that the formation of secondary minerals in the Miocene sediment occurred over a short period of time (e.g.,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrafiltration with tagged atoms was used to study physicochemical states (dissolved, colloidal, suspended) of Mn, Co, Ni, Zn, and Ce in bottom and interstitial waters collected in two areas of the Pacific Ocean with Fe-Mn nodules of different size, shape, structure and origin in different abundances. Use of filters with pore diameter of 0.05 ?m allowed to identify colloidal forms of the metals in bottom sediments and interstitial waters. It was demonstrated experimentally that differences in physicochemical situation in the studied areas could result in formation of nodules by different mechanisms, producing characteristic differences that were observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Submarine brine lakes feature sharp and persistent concentration gradients between seawater and brine, though these should be smoothed out by free diffusion in open ocean settings. The anoxic Urania basin of the Eastern Mediterranean contains an ultra sulfidic, hypersaline brine of Messinian origin above a thick layer of suspended sediments. With a dual modeling approach we reconstruct its contemporary stratification by geochemical solute transport fundamentals, and show that thermal convection is required to maintain mixing in the brine and mud layer. The origin of the Urania basin stratification was dated to 1650 years before present, which may be linked to a major earthquake in the region. The persistence of the chemoclines may be key to the development of diverse and specialized microbial communities. Ongoing thermal convection in the fluid mud layer may have important, yet unresolved consequences for sedimentological and geochemical processes, also in similar environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rising levels of atmospheric carbon dioxide could be curbed by large-scale sequestration of CO2 in the deep sea. Such a solution requires prior assessment of the impact of hypercapnic, acidic seawater on deep-sea fauna. Laboratory studies were conducted to assess the short-term hypercapnic tolerance of the deep-sea Tanner crab Chionoecetes tanneri, collected from 1000 m depth in Monterey Canyon off the coast of central California, USA. Hemolymph acid- base parameters were monitored over 24 h of exposure to seawater equilibrated with ~1% CO2 (seawater PCO2 ~6 torr or 0.8 kPa, pH 7.1), and compared with those of the shallow-living Dungeness crab Cancer magister. Short-term hypercapnia-induced acidosis in the hemolymph of Chionoecetes tanneri was almost uncompensated, with a net 24 h pH reduction of 0.32 units and a net bicarbonate accumulation of only 3 mM. Under simultaneous hypercapnia and hypoxia, short-term extracellular acidosis in Chionoecetes tanneri was completely uncompensated. In contrast, Cancer magister fully recovered its hemolymph pH over 24 h of hypercapnic exposure by net accumulation of 12 mM bicarbonate from the surrounding medium. The data support the hypothesis that deep-sea animals, which are adapted to a stable environment and exhibit reduced metabolic rates, lack the short-term acid-base regulatory capacity to cope with the acute hypercapnic stress that would accompany large-scale CO2 sequestration. Additionally, the data indicate that sequestration in oxygen-poor areas of the ocean would be even more detrimental to deep-sea fauna.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO3**2- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO3**2- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3/m**2/h and dissolution ranged from -0.05 to -3.3 mmol CaCO3/m**2/h. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO3**2- at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO3**2- and pCO2. Threshold pCO2 and CO3**2- values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 µatm and ranged from 467 to 1003 µatm. The average CO3**2- threshold value was 152±24 µmol/kg, ranging from 113 to 184 µmol/kg. Ambient seawater measurements of pCO2 and CO3**2- indicate that CO3**2- and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol/kg). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 µmol/kg (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relative contribution of soft bottoms to the community metabolism (primary production, respiration and net calcification) of a barrier reef flat has been investigated at Moorea (French Polynesia). Community metabolism of the sedimentary area was estimated using in situ incubations in perspex chambers, and compared with estimates of community metabolism of the whole reef flat obtained using a Lagrangian technique (Gattuso et al., 1996. Carbon flux in coral reefs. 1. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar. Ecol. Prog. Ser. 145, 109-121). Net organic carbon production (E), respiration (R) and net calcification (G) of sediments were measured by seven incubations performed in triplicate at different irradiance. Respiration and environmental parameters were also measured at four randomly selected additional stations. A model of Photosynthesis-irradiance allowed to calculate oxygen (O2), organic carbon (CO2) and calcium carbonate (CaCO3) evolution from surface irradiance during a diel cycle. As chlorophyll a content of the sediment was not significantly different between stations, primary production of the sediment was considered as homogeneous for the whole lagoon. Thus, carbon production at the test station can be modelled from surface light irradiance. The modelled respiration was two times higher at the test station than the mean respiration of the barrier reef, and thus underestimated sediment contribution to excess production. Sediments cover 40-60% of the surface and accounted for 2.8-4.1% of organic carbon excess production estimated with the modelled R and 21-32% when mean R value was considered. The sedimentary CaCO3 budget was a very minor component of the whole reef budget.