996 resultados para GLASS-CERAMICS
Resumo:
Multi-color LLP phenomenon was observed in Mn2+-doped ZnO-B2O3-SiO2 glassceramics after the irradiation of a UV lamp at room temperature. Transparent ZnO-B2O3-SiO2 glass emitted reddish LLP while opaque glass-ceramics prepared by the glass sample after heat treatment emitted yellowish or greenish LLP. The change of the phosphorescence is due to the alteration of co-ordination state of Mn2+. The phosphorescence of the samples was seen in the dark with naked eyes even 12 h after the irradiation with a UV lamp (lambda(max) = 254 nm) for 30 min. Based on the approximative t(-1) decay law of the phosphorescence, we suggest that the LLP is attributed to the thermally assisted electron-hole recombination.
Resumo:
A scanning probe microscopy approach for mapping local irreversible electrochemical processes based on detection of bias-induced frequency shifts of cantilevers in contact with the electrochemically active surface is demonstrated. Using Li ion conductive glass ceramic as a model, we demonstrate near unity transference numbers for ionic transport and establish detection limits for current-based and strain-based detection. The tip-induced electrochemical process is shown to be a first-order transformation and nucleation potential is close to the Li metal reduction potential. Spatial variability of the nucleation bias is explored and linked to the local phase composition. These studies both provide insight into nanoscale ionic phenomena in practical Li-ion electrolyte and also open pathways for probing irreversible electrochemical, bias-induced, and thermal transformations in nanoscale systems.
Resumo:
As piroxenas são um vasto grupo de silicatos minerais encontrados em muitas rochas ígneas e metamórficas. Na sua forma mais simples, estes silicatos são constituídas por cadeias de SiO3 ligando grupos tetrahédricos de SiO4. A fórmula química geral das piroxenas é M2M1T2O6, onde M2 se refere a catiões geralmente em uma coordenação octaédrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catiões numa coordenação octaédrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catiões em coordenação tetrahédrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclínica são designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composições químicas amplo, em conjugação com a possibilidade de ajustar as suas propriedades físicas e químicas e a durabilidade química, têm gerado um interesse mundial devido a suas aplicações em ciência e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicações funcionais. O estudo teve objectivos científicos e tecnológicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formação de fases cristalinas e soluções sólidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicação dos novos materiais em diferentes áreas tecnológicas, com especial ênfase sobre a selagem em células de combustível de óxido sólido (SOFC). Com este intuito, prepararam-se vários vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsídio (CaMgSi2O6) e diopsídio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados através de um vasto leque de técnicas. Todos os vidros foram preparados por fusão-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterização e cristalização de fritas, quer por nucleação e cristalização de vidros monolíticos. Estudaram-se ainda os efeitos de várias substituições iónicas em composições de diopsídio contendo Al na estrutura, sinterização e no comportamento durante a cristalização de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicação como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos à base de enstatite não apresentavam as características necessárias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos à base de diopsídio qualificaram-nos para futuros estudos neste tipo de aplicações. Para além de investigar a adequação dos vitro-cerâmicos à base de clinopyroxene como selantes, esta tese tem também como objetivo estudar a influência dos agentes de nucleação na nucleação em volume dos vitro-cerâmicos resultantes á base de diopsídio, de modo a qualificá-los como potenciais materiais hopedeiros de resíduos nucleares radioactivos.
Resumo:
O principal objectivo deste estudo foi o desenvolvimento de vitrocerâmicos à base de dissilicato de lítio no sistema Li2O-K2O-Al2O3-SiO2 contendo uma razão molar SiO2/Li2O muito afastada da do dissilicato de lítio (Li2Si2O5) usando composições simples e a técnica tradicional de fusão-vazamento de vidro de forma a obter materiais com propriedades mecânicas, térmicas, químicas e eléctricas superiores que permitam a utilização destes materiais em diversas aplicações funcionais. Investigou-se o fenómeno de separação de fases, a cristalização e as relações estrutura-propriedades de vidros nos sistemas Li2O-SiO2, Li2O-Al2O3-SiO2 e Li2O-K2O-Al2O3-SiO2. Os vidros nos sistemas Li2O-SiO2 e Li2O-Al2O3-SiO2 apresentaram fraca densificação e resultaram em materiais frágeis, contrastando com a boa sinterização dos vidros no sistema Li2O-K2O-Al2O3-SiO2. Pequenas adições de Al2O3 e K2O ao sistema Li2O-SiO2 permitiram controlar a separação de fases devido à formação de espécies de Al(IV) que confirmaram o papel de Al2O3 como formador de rede. Os compactos de pó de vidro das composições contendo Al2O3 e K2O tratados termicamente resultaram em vitrocerâmicos bem densificados, apresentando dissilicato de lítio como a principal fase cristalina, e valores de resistência mecânica à flexão, resistência química e condutividade eléctrica (173-224 MPa, 25-50 mg/cm2 e ~2´10-18 S/cm, respectivamente) que possibilitam a utilização destes materiais em diversas aplicações funcionais. A adição de P2O5, TiO2 e ZrO2 ao sistema Li2O-K2O-Al2O3-SiO2 como agentes nucleantes revelou que os vidros contendo apresentaram cristalização em volume, com a formação de metassilicato de lítio a temperaturas mais baixas e dissilicato de lítio para as temperaturas mais elevadas, enquanto a adição de zircónia reduz o grau de segregação, aumenta a polimerização da matriz vítrea e desloca o valor de Tg para temperaturas superiores, inibindo a cristalização.
Resumo:
Bioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaOMgOP2O5SiO2F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside – fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.
Resumo:
Modified fluorcanasite glasses were fabricated by either altering the molar ratios of Na(2)O and CaO or by adding P(2)O(5) to the parent stoichiometric glass compositions. Glasses were converted to glass-ceramics by a controlled two-stage heat treatment process. Rods (2 mm x 4 mm) were produced using the conventional lost-wax casting technique. Osteoconductive 45S5 bioglass was used as a reference material. Biocompatibility and osteoconductivity were investigated by implantation into healing defects (2 mm) in the midshaft of rabbit femora. Tissue response was investigated using conventional histology and scanning electron microscopy. Histological and histomorphometric evaluation of specimens after 12 weeks implantation showed significantly more bone contact with the surface of 45S5 bioglass implants when compared with other test materials. When the bone contact for each material was compared between experimental time points, the Glass-Ceramic 2 (CaO rich) group showed significant difference (p = 0.027) at 4 weeks, but no direct contact at 12 weeks. Histology and backscattered electron photomicrographs showed that modified fluorcanasite glass-ceramic implants had greater osteoconductivity than the parent stoichiometric composition. Of the new materials, fluorcanasite glass-ceramic implants modified by the addition of P(2)O(5) showed the greatest stimulation of new mineralized bone tissue formation adjacent to the implants after 4 and 12 weeks implantation. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 94A: 760-768, 2010
Resumo:
Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy.Methods. Metallic frameworks (diameter: 5 min, thickness: 4 mm) (N = 96, n = 12 per group) were cast in cpTi and gold alloy, airborne particle abraded with 150 mu m aluminum oxide. Low-fusing glassy matrix ceramics and a conventional feldspathic ceramic were fired onto the alloys (thickness: 4mm). Four experimental groups were formed; Gr1 (control group): Vita Omega 900-Au-Pd alloy; Gr2: Ticeram-cpTi; Gr3: Super Porcelain Ti-22-cpTi and G4: Vita Titankeramik-cpTi. While half of the specimens from each ceramic-metal combination were randomly tested without aging (water storage at 37 C for 24h only), the other half were first thermocycled (6000 cycles, between 5 and 55 C, dwell time: 13 s) and then mechanically loaded (20,000 cycles under SON load, immersion in distilled water at 37 C). The ceramic-alloy interfaces were loaded under shear in a universal test machine (cross-head speed: 0.5 mm/min) until failure occur-red. Failure types were noted and the interfaces of the representative fractured specimens from each group were examined with stereo microscope and scanning electron microscope (SEM). in an additional study (N = 16, n = 2 per group), energy dispersive X-ray spectroscopy (EDS) analysis was performed from ceramic-alloy interfaces. Data were analyzed using ANOVA and Tukey's test.Results. Both ceramic-metal combinations (p < 0.001) and aging conditions (p < 0,001) significantly affected the mean bond strength values. Thermal- and mechanical-cycling decreased the bond strength (MPa) results significantly for Gr3 (33.4 +/- 4.2) and Gr4 (32.1 +/- 4.8) when compared to the non-aged groups (42.9 +/- 8.9, 42.4 +/- 5.2, respectively). Gr1 was not affected significantly from aging conditions (61.3 +/- 8.4 for control, 60.7 +/- 13.7 after aging) (p > 0.05). Stereomicroscope images showed exclusively adhesive failure types at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface but with a visible dark titanium oxide layer in Groups 2-4 except Gr1 where remnants of bonder ceramic was visible. EDS analysis from the interfacial zone for cpTi-ceramic groups showed predominantly 34.5-85.1% O(2) followed by 1.1-36.7% Aland 0-36.3% Si except for Super Porcelain Ti-22 where a small quantity of Ba (1.4-8.3%), S (0.7%) and Sn (35.3%) was found. In the Au-Pd alloy-ceramic interface, 56.4-69.9% O(2) followed by 15.6-26.2% Si, 3.9-10.9% K, 2.8-6% Na, 4.4-9.6% Al and 0-0.04% Mg was observed.Significance. After thermal-cycling for 6000 times and mechanical-cycling for 20,000 times, Triceram-cpTi combination presented the least decrease among other ceramic-alloy combinations when compared to the mean bond strength results with Au-Pd alloy-Vita Omega 900 combination. (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: This study evaluated the surface degradation effect of acidulated phosphate fluoride (APF) gel exposure on the glassy matrix ceramics as a function of time. Material and methods: Disc-shaped ceramic specimens (N = 120, 10/per ceramic material) were prepared in stainless steel molds (inner diameter: 5 mm, height: 2 mm) using 6 dental ceramics: 3 indicated for ceramic-fused-to-metal (Vita Omega 900, Carmen and Vita Titankeramik), 2 for all-ceramic (Vitadur Alpha and Finesse (R) Low Fusing) and 1 for both types of restorations (IPS d. SIGN). The specimens were wet ground finished, ultrasonically cleaned and auto-glazed. All specimens were subjected to calculation of percentage of mass loss, surface roughness analysis and topographical description by scanning electron microscopy (SEM) before (0 min) and after exposure to 1.23 % APF gel for 4 min and 60 min representing short-and long-term etching effect, respectively. The data were analyzed using two-way ANOVA with repeated measures and Tukey` s test (alpha=0.05). Results: Significant effect of the type of the ceramics (p=0.0000, p=0.0031) and exposure time (p=0.0000) was observed in both surface roughness and percentage of mass loss values, respectively. The interaction factor between both parameters was also significant for both parameters (p=0.0904, p=0.0258). Both 4 min (0.44 +/- 0.1-0.81 +/- 0.2 mu m) and 60 min (0.66 +/- 0.1 - 1.04 +/- 0.3 mu m) APF gel exposure created significantly more surface roughness for all groups when compared to the control groups (0.33 +/- 0.2-0.68 +/- 0.2 mu m) (p<0.05). There were no significant differences in percentage of mass loss between the ceramics at 4 min (p>0.05) but at 60 min exposure, IPS d. SIGN showed the highest percentage of mass loss (0.1151 +/- 0.11). The mean surface roughness for Vita Titankeramik (0.84 +/- 0.2 mu m) and Finesse (R) Low Fusing (0.74.+/- 0.2 mu m) was significantly higher than those of the other ceramics (0.59 +/- 0.1 mu m - 0.49 +/- 0.1 mu m) and Vita Titankeramik (p<0.05) regardless of the exposure time. A positive correlation was found between surface roughness and percentage of mass loss for all ceramic materials [(r=0.518 (Vitadur Alpha), r=0.405 (Vita Omega 900), r=0.580 (Carmen), r=0.687 (IPS d. SIGN), r=0.442 (Finesse (R) Low Fusing), r=0.572 (Vita Titankeramik), Pearson's correlation coefficient)]. The qualitative SEM analysis showed evidence of corrosive attack on all of ceramics at varying degrees. Conclusions: The ceramics indicated for either metal-ceramic or all-ceramic restorations were all vulnerable to surface texture changes and mass loss after short-term and long-term APF gel exposure.
Resumo:
This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne particle abrasion at a designated area of the frameworks (8 x 3 mm). Bonder and opaque ceramic were applied on the frameworks, and then the corresponding ceramic (Triceram, Super Porcelain Ti-22, Vita Titankeramik) was fired onto them (thickness: 1 mm). Half of the specimens from each ceramic-metal combination were randomly tested without aging (only water storage at 37 degrees C for 24 hours), while the other half were mechanically loaded (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and thermocycled (3,000 cycles, between 5-55 degrees C, dwell time of 13 seconds). After the flexural strength test, failure types were noted. Mechanical and thermal cycling decreased the mean flexural strength values significantly (p<0.05) for all the three ceramic-cpTi combinations tested when compared to the control group. In all the three groups, failure type was exclusively adhesive at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface except for a visible oxide layer.
Resumo:
Transparent glass ceramics have been prepared in the Ga2S3-GeS2-CsCI pseudoternary system appropriate heat treatment time and temperature. In situ X-ray diffraction at the heat treatment temperature and Cs-133 and Ga-71 solid-state nuclear magnetic resonance have been performed in function of annealing time to understand the crystallization process. Both techniques have evidenced the nucleating agent role played by gallium with the formation of Ga2S3 nanocrystals. on the other hand, cesium is incorporated very much later into the crystallites during the ceramization. Moreover, the addition of CsCl, which is readily integrated into the glassy network, permits us to shift the optical band gap toward shorter wavelength. Thus, new glass ceramics transmitting in the whole visible range up to 11.5 mu m have been Successfully synthesized from the (Ga2S3)(35)-(GeS2)(25)-CsCl40 base glass composition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glasses with composition 60PbGeO(3)-10PbF(2)-30CdF(2) (mol%) have been obtained in the bulk form with a high stability against crystallization. After doping them with 0.5 mol% of Er3+ or Eu3+ and appropriate heat treatment transparent glass ceramics could be obtained. Electronic spectroscopy, X-ray diffraction and transmission electron microscopy measurements have been made. beta-PbF2: Er3+/Eu3+ Single crystals, 5-10 nm in size, are detected in the otherwise transparent composite medium, the size of the particles and absence of clustering allowing for the increased transparency of the final materials. (C) 1999 Elsevier B.V. B.V. All rights reserved.