995 resultados para GIANT PLANET MIGRATION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uncovering the demographics of extrasolar planets is crucial to understanding the processes of their formation and evolution. In this thesis, we present four studies that contribute to this end, three of which relate to NASA's Kepler mission, which has revolutionized the field of exoplanets in the last few years.

In the pre-Kepler study, we investigate a sample of exoplanet spin-orbit measurements---measurements of the inclination of a planet's orbit relative to the spin axis of its host star---to determine whether a dominant planet migration channel can be identified, and at what confidence. Applying methods of Bayesian model comparison to distinguish between the predictions of several different migration models, we find that the data strongly favor a two-mode migration scenario combining planet-planet scattering and disk migration over a single-mode Kozai migration scenario. While we test only the predictions of particular Kozai and scattering migration models in this work, these methods may be used to test the predictions of any other spin-orbit misaligning mechanism.

We then present two studies addressing astrophysical false positives in Kepler data. The Kepler mission has identified thousands of transiting planet candidates, and only relatively few have yet been dynamically confirmed as bona fide planets, with only a handful more even conceivably amenable to future dynamical confirmation. As a result, the ability to draw detailed conclusions about the diversity of exoplanet systems from Kepler detections relies critically on understanding the probability that any individual candidate might be a false positive. We show that a typical a priori false positive probability for a well-vetted Kepler candidate is only about 5-10%, enabling confidence in demographic studies that treat candidates as true planets. We also present a detailed procedure that can be used to securely and efficiently validate any individual transit candidate using detailed information of the signal's shape as well as follow-up observations, if available.

Finally, we calculate an empirical, non-parametric estimate of the shape of the radius distribution of small planets with periods less than 90 days orbiting cool (less than 4000K) dwarf stars in the Kepler catalog. This effort reveals several notable features of the distribution, in particular a maximum in the radius function around 1-1.25 Earth radii and a steep drop-off in the distribution larger than 2 Earth radii. Even more importantly, the methods presented in this work can be applied to a broader subsample of Kepler targets to understand how the radius function of planets changes across different types of host stars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the discovery of WASP-4b, a large transiting gas-giant planet with an orbital period of 1.34 days. This is the first planet to be discovered by the SuperWASP-South observatory and CORALIE collaboration and the first planet orbiting a star brighter than 16th magnitude to be discovered in the southern hemisphere. A simultaneous fit to high-quality light curves and precision radial velocity measurements leads to a planetary mass of 1.22(-0.08)(+0.09) M-Jup and a planetary radius of 1.42(-0.04)(+0.07) R-Jup. The host star is USNO-B1.0 0479-0948995, a G7 V star of visual magnitude 12.5. As a result of the short orbital period, the predicted surface temperature of the planet is 1761 K, making it an ideal candidate for detections of the secondary eclipse at infrared wavelengths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the discovery of a new transiting close-in giant planet, WASP-24 b, in a 2.341 day orbit, 0.037 AU from its F8-9 type host star. By matching the star's spectrum with theoretical models, we infer an effective temperature T eff = 6075 ± 100 K and a surface gravity of log g = 4.15 ± 0.10. A comparison of these parameters with theoretical isochrones and evolutionary mass tracks places only weak constraints on the age of the host star, which we estimate to be 3.8+1.3 –1.2 Gyr. The planetary nature of the companion was confirmed by radial velocity measurements and additional photometric observations. These data were fit simultaneously in order to determine the most probable parameter set for the system, from which we infer a planetary mass of 1.071+0.036 –0.038 M Jup and radius 1.3+0.039 –0.037 R Jup.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295 ± 0.0009 AU) around a moderately bright (V = 11.6, K = 10) G9 dwarf (0.89 ± 0.08 Msun, 0.84 ± 0.03 Rsun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50 b, are well constrained to 1.47 ± 0.09 MJup and 1.15 ± 0.05 RJup, respectively. The transit ephemeris is 2 455 558.6120 (±0.0002) + N × 1.955096 (±0.000005) HJDUTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'HK = -4.67) and rotational period (Prot = 16.3 ± 0.5 days) of the host star suggest an age of 0.8 ± 0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (?* = 1.48 ± 0.10 ?sun, Teff = 5400 ± 100 K, [Fe/H] = -0.12 ± 0.08) which favors an age of 7 ± 3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity. We measure a stellar inclination of 84-31+6 deg, disfavoring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50 b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars. The photometric time-series used in this work are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A88

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysisof Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and iscomposed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolvedand metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1+5.1−4.7 M⊕, radius Rp = 5.77+0.85−0.79 R⊕, and density ρp = 1.45+0.83 −0.48 g cm−3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements makeup a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25+0.19−0.17 R⊕, which implies theabsence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp < 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 − containing aclose-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance − is certainly of interest for scenarios of planet formation and evolution. This system does not follow the previously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We revisit the issue of sensitivity to initial flow and intrinsic variability in hot-Jupiter atmospheric flow simulations, originally investigated by Cho et al. (2008) and Thrastarson & Cho (2010). The flow in the lower region (~1 to 20 MPa) `dragged' to immobility and uniform temperature on a very short timescale, as in Liu & Showman (2013), leads to effectively a complete cessation of variability as well as sensitivity in three-dimensional (3D) simulations with traditional primitive equations. Such momentum (Rayleigh) and thermal (Newtonian) drags are, however, ad hoc for 3D giant planet simulations. For 3D hot-Jupiter simulations, which typically already employ strong Newtonian drag in the upper region, sensitivity is not quenched if only the Newtonian drag is applied in the lower region, without the strong Rayleigh drag: in general, both sensitivity and variability persist if the two drags are not applied concurrently in the lower region. However, even when the drags are applied concurrently, vertically-propagating planetary waves give rise to significant variability in the ~0.05 to 0.5 MPa region, if the vertical resolution of the lower region is increased (e.g. here with 1000 layers for the entire domain). New observations on the effects of the physical setup and model convergence in ‘deep’ atmosphere simulations are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis we analyze the effects that the presence of a near gas giant planet can cause in its host star. It has been argued that the star planet interaction can cause changes in the coronal and chromospheric stellar activity. With this in mind, we analyze a sample of 53 extrasolar planets orbiting F, G and K main sequence stars, among them three super-Earths. In this analysis, we look for evidence of changes in the chromospheric activity due to the proximity of the giant planet. We show that, so far, there is not enough evidence to support such a hypothesis. Making use of the same sample and also taking in account available data for the Solar System, we revisit the so-called magnetic Bode s law. This law proposes the existence of a direct relationship between magnetism and rotation. By using estimations for the stellar and planetary magnetic momentM and the angular momentumL, we construct a Blackett s diagram (logL 􀀀logM). In this diagram is evident that the magnetic Bode s law is valid for both the Solar System and the new planetary systems

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims.We investigate the dynamics of pebbles immersed in a gas disk interacting with a planet on an eccentric orbit. The model has a prescribed gap in the disk around the location of the planetary orbit, as is expected for a giant planet with a mass in the range of 0.1-1 Jupiter masses. The pebbles with sizes in the range of 1 cm to 3 m are placed in a ring outside of the giant planet orbit at distances between 10 and 30 planetary Hill radii. The process of the accumulation of pebbles closer to the gap edge, its possible implication for the planetary accretion, and the importance of the mass and the eccentricity of the planet in this process are the motivations behind the present contribution. Methods. We used the Bulirsch-Stoer numerical algorithm, which is computationally consistent for close approaches, to integrate the Newtonian equations of the planar (2D), elliptical restricted three-body problem. The angular velocity of the gas disk was determined by the appropriate balance between the gravity, centrifugal, and pressure forces, such that it is sub-Keplerian in regions with a negative radial pressure gradient and super-Keplerian where the radial pressure gradient is positive. Results. The results show that there are no trappings in the 1:1 resonance around the L 4 and L5 Lagrangian points for very low planetary eccentricities (e2 < 0.07). The trappings in exterior resonances, in the majority of cases, are because the angular velocity of the disk is super-Keplerian in the gap disk outside of the planetary orbit and because the inward drift is stopped. Furthermore, the semi-major axis location of such trappings depends on the gas pressure profile of the gap (depth) and is a = 1.2 for a planet of 1 MJ. A planet on an eccentric orbit interacts with the pebble layer formed by these resonances. Collisions occur and become important for planetary eccentricity near the present value of Jupiter (e 2 = 0.05). The maximum rate of the collisions onto a planet of 0.1 MJ occurs when the pebble size is 37.5 cm ≤ s < 75 cm; for a planet with the mass of Jupiter, it is15 cm ≤ s < 30 cm. The accretion stops when the pebble size is less than 2 cm and the gas drag dominates the motion. © 2013 ESO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 ( LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 +/- 0.33 Jupiter masses and 1.30 +/- 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 +/- 0.0011 AU and an orbital period of 2.72474 +/- 0.00014 days. The planetary bulk density is ( 1.36 +/- 0.48) x 10(3) kg m(-3), very similar to the bulk density of Jupiter, and follows an M-1/3 - R relation like Jupiter. The F8IV star is a sub-giant star of 1.29 +/- 0.09 solar masses and 1.95 +/- 0.2 solar radii. The star and the planet exchange extreme tidal forces that will lead to orbital decay and extreme spin-up of the stellar rotation within 800 Myr if the stellar dissipation is Q(*)/k2(*) <= 107.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present high resolution transmission spectra of giant planet atmospheres from a coupled 3-D atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9 to 55 day orbital periods around solar-type stars. The results of our 3-D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple 1-D models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blue shifts of up to 3 km s−1, whereas less irradiated planets show almost no net Doppler shifts. Compared to 1-D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3-D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1-D atmospheric models may be inadequate, as 3-D atmospheric motions can produce a noticeable effect on the absorption signatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases׳ abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn׳s atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn׳s bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn׳s upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn׳s bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn׳s stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn׳s stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims. The main goal of this work is to study element ratios that are important for the formation of planets of different masses. Methods. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. Results. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggest that low-mass planets are more prevalent around stars with high [Mg/Si]. Conclusions. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition. The results also show that abundance ratios may be a very relevant issue for our understanding of planet formation and evolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)