947 resultados para GFRP waste
Resumo:
Radioactive wastes are by-products of the use of radiation technologies. As with many technologies, the wastes are required to be disposed of in a safe manner so as to minimise risk to human health. This study examines the requirements for a hypothetical repository and develops techniques for decision making to permit the establishment of a shallow ground burial facility to receive an inventory of low-level radioactive wastes. Australia’s overall inventory is used as an example. Essential and desirable siting criteria are developed and applied to Australia's Northern Territory resulting in the selection of three candidate sites for laboratory investigations into soil behaviour. The essential quantifiable factors which govern radionuclide migration and ultimately influence radiation doses following facility closure are reviewed. Simplified batch and column procedures were developed to enable laboratory determination of distribution and retardation coefficient values for use in one-dimensional advection-dispersion transport equations. Batch and column experiments were conducted with Australian soils sampled from the three identified candidate sites using a radionuclide representative of the current national low-level radioactive waste inventory. The experimental results are discussed and site soil performance compared. The experimental results are subsequently used to compare the relative radiation health risks between each of the three sites investigated. A recommendation is made as to the preferred site to construct an engineered near-surface burial facility to receive the Australian low-level radioactive waste inventory.
Resumo:
Office building retrofit projects are increasingly more intensified as existing buildings are aging. At the same time, building owners and occupants are looking for environmentally sustainable products. These retrofit projects usually take place in center business district (CBDs) with on-site waste becoming one of the critical issues. Small and Medium Enterprises (SMEs) carry out most of the work in retrofit projects as subcontractors. Despite their large involvement, they often do not have adequate resources to deal with the specific technical challenges and project risks related to waste. Few research has been done on their performance of waste management operations. This paper identifies characteristics of on-site waste in office building retrofit projects. It examines the specific requirements for contractors to manage waste in the projects before exploring the existing performance of SMEs. By comparing requirements for SMEs and their potential areas for improvement, a framework is established for performance promotion of SMEs in on-site waste management of office building retrofit projects. The paper will raise the consciousness and commitment of SMEs as sub-contractors to waste management. It also explores ways of supporting SMEs for experience accumulation, performance promotion and project culture establishment towards effective and efficient on-site waste management in the growing sector of office building retrofit and upgrade.
Resumo:
Sodium niobates doped with different amount of tantalum (TaV) were prepared via thermal reaction process. It was found pure nanofibril and bar-like solids can be obtained when tantalum was introduced into the reaction system. For the well-crystallized fibril solids, the Na+ ions are difficult to be exchanged, and the radioactive ions such as Sr2+ and Ra2+ ions just deposit on the surface of the fibers during the sorption process, resulting in lower sorption capacity and distribution coefficients (Kd)`. However, the bar-like solids are poorly-crystallized and have lots of exchangeable Na+ ions. They are able to remove highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ ions. Even in the presence of lots of Na+ ions, they also have higher Kd. More importantly, such sorption finally intelligently triggers considerable collapse of the structure, resulting in the entrapment of the toxic bivalent cations permanently in the solids so that they can be safely disposed. This study highlights new opportunities for the preparation of Nb-based adsorbents to efficiently remove the toxic radioactive ions from contaminated water.
Resumo:
In recent years, there has been a significant amount of research and development in the area of solar photocatalysis. This paper reviews and summarizes the mechanism of photocatalytic oxidation process, types of photocatalyst, and the factors influencing the photoreactor efficiency and the most recent findings related to solar detoxification and disinfection of water contaminants. Various solar reactors for photocatlytic water purification are also briefly described. The future potential of solar photocatlysis for storm water treatment and reuse is also discussed to ensure sustainable use of solar energy and storm water resources.
Resumo:
Levels of waste within the construction industry need to be reduced for environmental and economic reasons. Changing people's wasteful behaviour can make a significant contribution. This paper describes a research project that used Ajzen's 'theory of planned behaviour' to investigate the attitudinal forces that shape behaviour at the operative level. It concludes that operatives see waste as an inevitable by-product of construction activity. Attitudes towards waste management are not negative, although they are pragmatic and impeded by perceptions of a lack of managerial commitment. Waste management is perceived as a low project priority, and there is an absence of appropriate resources and incentives to support it. A theory of waste behaviour is proposed for the construction industry, and recommendations are made to help managers improve operatives' attitudes towards waste.
Resumo:
Office building retrofit projects face many challenges for on-site waste management. While the projects themselves have the potential for a significant level of reuse and recycling from decon-struction and demolition, their unique characteristics often prohibit direct application of existing waste management systems, which are typically based on managing waste generated through new material application in new build projects. Moreover, current waste management plans include no stimuli to involve Small and Medium Enterprises (SMEs) for on-site waste management. As SMEs carry out the majority of on-site work as subcontractors, their active involvements will result in more proactive approaches to waste management and enhance project delivery. This paper discusses the interim results of a continuing research aimed at engaging SMEs in the planning processes of waste management through the collaboration between subcontractors and main contractors of retrofitting projects. It introduces a conceptual model for SMEs to proactively plan and manage on-site waste generation for both deconstruction and construction stages, before traditional waste management plans by the main contractor come into place. The model also suggests a collaboration process between SMEs as subcontractors and large companies as the main contractor to improve the involvement and performance of SMEs in waste management of office building retrofit projects.
Resumo:
Retrofit projects are different from newly-built projects in many respects. A retrofit project involves an existing building, which imposes constraints on the owners, designers, operators and constructors throughout the project process. Retrofit projects are risky, complex, less predictable and difficult to be well planned, which need greater coordination. For office building retrofit project, further restrictions will apply as these buildings often locate in CBD areas and most have to remain operational during the progression of project work. Issues such as site space, material storage and handling, noise and dust, need to be considered and well addressed. In this context, waste management is even more challenging with small spaces for waste handling, uncertainties in waste control, and impact of waste management activities on project delivery and building occupants. Current literatures on waste management in office building retrofit projects focus on increasing waste recovery rate based on project planning, monitoring and stakeholders’ collaboration. However, previous research has not produced knowledge of understanding the particular retrofit processes and their impact on waste generation and management. This paper discusses the interim results of a continuing research on new strategies for waste management in office building retrofit projects. Firstly based on the literature review, it summarizes the unique characteristics of office building retrofit projects and their influence on waste management. An assumption on waste management strategies is formed. Semi-structured interviews were conducted towards industry practitioners and findings are then presented in the paper. The assumption of the research was validated in the interviews from the opinions and experiences of the respondents. Finally the research develops a process model for waste management in office building retrofit projects. It introduces two different waste management strategies. For the dismantling phase, waste is generated fast along with the work progress, so integrated planning for project delivery and waste generation is needed in order to organize prompt handling and treatment. For the fit-out phase, the work is similar as new construction. Factors which are particularly linked to generating waste on site need to be controlled and monitored. Continuing research in this space will help improve the practice of waste management in office building retrofit projects. The new strategies will help promote the practicality of project waste planning and management and stakeholders’ capability of coordinating waste management and project delivery.
Resumo:
The renovation of biomass waste in the form of date seed waste into activated carbon and biofuel by fixed bed pyrolysis reactor has been focused in this study to obtain gaseous, liquid, and solid products. The date seed in particle form is pyrolysed in an externally heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 400◦C to 600◦C. A maximum liquid yield of 50wt.% and char of 30wt.% are obtained at a reactor bed temperature of 500◦C with a running time of 120 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived. Decolonization of 85–97% is recorded for the textile effluent and 75–90% for the tannery effluent, in all cases decreasing with temperature increase. Good adsorption capacity of the prepared activated carbon in case of diluted textile and tannery effluent was found.
Resumo:
The conversion of biomass waste in the form of date seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from these date seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collector. The date seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 50 wt.% is obtained at a reactor bed temperature of 5000 C for a feed size volume of 0.11- 0.20 cm3 with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and also with conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived pyrolysis oils.
Resumo:
Among various thermo-chemical conversion processes, pyrolysis is considered as an emerging technology for liquid oil production. The conversion of biomass waste in the form of plum seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from this plum seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The plum seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 39 wt% of biomass feed is obtained with particle size of 2.36-4.75 mm at a reactor bed temperature of 520oC with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 22.39 MJ/kg which is higher than other biomass derived pyrolysis oils.
Resumo:
This paper introduces the first iteration of a study aimed at grouping similar food types together in a refrigerator to increase the awareness of available foods for consumers in a domestic environment. The goals of the project are twofold: i) Raise the awareness of available foods for all members of a household; ii) Reduce the amount of expired food waste in the household. The project implemented a paper-based colour scheme in refrigerators in households, assigning colours to particular food types (e.g. green to fruit and vegetables, red to meat, etc.). The findings show that the colour coding raised participants’ awareness of available food items in the fridge, particularly for those participants who were not directly involved in the shopping and initial storage of each food item. The findings also indicate that such awareness led to a reduction in expiration of food and thus general food waste in the household. These preliminary findings suggest that raising awareness of food availability through categorisation and efficient communication of this information may lead to a reduction in food waste in domestic environments.
Resumo:
Waste is intrinsic to the fashion system. Fashion is predicated on built-in obsolescence, and as such outmoded garments are rapidly discarded to charity shops or landfill. However, the story of fashion is also one of abundance and extravagance in design ideas. Every season there are new design details – prints, embroidery, embellishments, shapes and textures. This excess of ideas is in itself another form of waste, albeit one that is culturally nourishing. The grave of a fashion garment may also be the grave of a season’s research and creativity. This paper compares the tangible waste of the industry with its intangible waste, namely fashion’s creativity and cultural excess. Fashion’s excess and abundance of trends and ideas makes any move to curb the environmental impact difficult. For all practitioners of fashion – whether designers or consumers – the waste and excess inherent in the fashion system is a difficult ethical terrain to negotiate. However, inverting the wasteful phases of the production cycle can help reframe waste from pollution to a source of nourishment for future practice. While creative excesses of designers may be ‘wasted’ after a season, fashion styles and tropes are recycled and reinvented, with the once passé styles and design ideas from previous years revalorized and returned into the fashion system. Similarly, material garments acquire new value through entering or re-entering the second hand or vintage markets. Design processes can utilise pre or post-consumer textile waste, or eliminate waste through design. In these processes, waste becomes the primary source of nourishment for future fashion cycles.