983 resultados para GEOMETRICALLY EXACT RODS
Resumo:
Starting from the two-mode Bose-Hubbard model, we derive an exact version of the standard Mathieu equation governing the wave function of a Josephson junction. For a finite number of particles N, we find an additional cos 2 phi term in the potential. We also find that the inner product in this representation is nonlocal in phi. Our model exhibits phenomena, such as pi oscillations, which are not found in the standard phase model, but have been predicted from Gross-Pitaevskii mean-field theory.
Resumo:
Form factors are derived for a model describing the coherent Josephson tunneling between two coupled Bose-Einstein condensates. This is achieved by studying the exact solution of the model within the framework of the algebraic Bethe ansatz. In this approach the form factors are expressed through determinant representations which are functions of the roots of the Bethe ansatz equations.
Resumo:
A pairing model for nucleons, introduced by Richardson in 1966, which describes proton-neutron pairing as well as proton-proton and neutron-neutron pairing, is re-examined in the context of the quantum inverse scattering method. Specifically, this shows that the model is integrable by enabling the explicit construction of the conserved operators. We determine the eigenvalues of these operators in terms of the Bethe ansatz, which in turn leads to an expression for the energy eigenvalues of the Hamiltonian.
Resumo:
A model is introduced for two reduced BCS systems which are coupled through the transfer of Cooper pairs between the systems. The model may thus be used in the analysis of the Josephson effect arising from pair tunneling between two strongly coupled small metallic grains. At a particular coupling strength the model is integrable and explicit results are derived for the energy spectrum, conserved operators, integrals of motion, and wave function scalar products. It is also shown that form factors can be obtained for the calculation of correlation functions. Furthermore, a connection with perturbed conformal field theory is made.
Resumo:
We introduce an integrable model for two coupled BCS systems through a solution of the Yang-Baxter equation associated with the Lie algebra su(4). By employing the algebraic Bethe ansatz, we determine the exact solution for the energy spectrum. An asymptotic analysis is conducted to determine the leading terms in the ground state energy, the gap and some one point correlation functions at zero temperature. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The exact description of the thermodynamics of solutions has been used to describe, without approximation, the distribution of all the components of an incompressible solution in a centrifuge cell at sedimentation equilibrium. Thermodynamic parameters describing the interactions between solute components of known molar mass can be obtained by direct analysis of the experimental data. Interpretation of the measured thermodynamic parameters in terms of molecular interactions requires that an arbitrary distinction be made between nonassociative forces, like hard-sphere volume-exclusion and mean-field electrostatic repulsion or attraction, and specific short-range forces of association that give rise to the formation of molecular aggregates. Provided the former can be accounted for adequately, the effects of the latter can be elucidated in the form of good estimates of the equilibrium constants for the reactions of aggregation.
Resumo:
The minimum number of incomplete blocks required to cover, exactly lambda times, all t-element subsets from a set V of cardinality v (v > t) is denoted by y(lambda, t; v). The value of g(2, 2; v) is known for v = 3, 4,..., 11. It was previously known that 14 less than or equal to g(2, 2; 12) less than or equal to 16. We prove that g(2, 2; 12) greater than or equal to 15.
Resumo:
A model describing coherent quantum tunnelling between two trapped Bose-Einstein condensates is discussed. It is not well known that the model admits an exact solution, obtained some time ago, with the energy spectrum derived through the algebraic Bethe ansatz. An asymptotic analysis of the Bethe ansatz equations leads us to explicit expressions for the energies of the ground and the first excited states in the limit of weak tunnelling and all energies for strong tunnelling. The results are used to extract the asymptotic limits of the quantum fluctuations of the boson number difference between the two Bose-Einstein condensates and to characterize the degree of coherence in the system.
Resumo:
We present a theory for the transport of molecules adsorbed in slit and cylindrical nanopores at low density, considering the axial momentum gain of molecules oscillating between diffuse wall reflections. Good agreement with molecular dynamics simulations is obtained over a wide range of pore sizes, including the regime of single-file diffusion where fluid-fluid interactions are shown to have a negligible effect on the collective transport coefficient. We show that dispersive fluid-wall interactions considerably attenuate transport compared to classical hard sphere theory.
Resumo:
We investigate a mechanism that generates exact solutions of scalar field cosmologies in a unified way. The procedure investigated here permits to recover almost all known solutions, and allows one to derive new solutions as well. In particular, we derive and discuss one novel solution defined in terms of the Lambert function. The solutions are organised in a classification which depends on the choice of a generating function which we have denoted by x(phi) that reflects the underlying thermodynamics of the model. We also analyse and discuss the existence of form-invariance dualities between solutions. A general way of defining the latter in an appropriate fashion for scalar fields is put forward.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.
Resumo:
The criticality of self-assembled rigid rods on triangular lattices is investigated using Monte Carlo simulation. We find a continuous transition between an ordered phase, where the rods are oriented along one of the three (equivalent) lattice directions, and a disordered one. We conclude that equilibrium polydispersity of the rod lengths does not affect the critical behavior, as we found that the criticality is the same as that of monodisperse rodson the same lattice, in contrast with the results of recently published work on similar models. (C) 2011 American Institute of Physics. [doi:10.1063/1.3556665]
Resumo:
This work reports a recently developed electro-optical (EO) device that can potentially be used as a light shutter or a privacy window. By using nanocrystalline cellulose rods, we were able to improve some of the most relevant parameters characterising the EO behaviour. A brief description of the proposed working mechanism for these devices is presented, and numerical simulations based on this mechanism of both the optical transmission and the cells' electrical capacitance are compared with the obtained results, validating the underlying working model considered.
Resumo:
Consider a communication medium shared among a set of computer nodes; these computer nodes issue messages that are requested to be transmitted and they must finish their transmission before their respective deadlines. TDMA/SS is a protocol that solves this problem; it is a specific type of Time Division Multiple Access (TDMA) where a computer node is allowed to skip its time slot and then this time slot can be used by another computer node. We present an algorithm that computes exact queuing times for TDMA/SS in conjunction with Rate-Monotonic (RM) or Earliest- Deadline-First (EDF).