986 resultados para GANGLION-CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three members of the Brn-3 family of POU domain transcription factors are found in highly restricted sets of central nervous system neurons. Within the retina, these factors are present only within subsets of ganglion cells. We show here that in the developing mouse retina, Brn-3b protein is first observed in presumptive ganglion cell precursors as they begin to migrate from the zone of dividing neuroblasts to the future ganglion cell layer, and that targeted disruption of the Brn-3b gene leads in the homozygous state to a selective loss of 70% of retinal ganglion cells. In Brn-3b (-/-) mice other neurons within the retina and brain are minimally or not at all affected. These experiments indicate that Brn-3b plays an essential role in the development of specific ganglion cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal ganglion cells are the output neurons that encode and transmit information from the eye to the brain. Their diverse physiologic and anatomic properties have been intensively studied and appear to account well for a number of psychophysical phenomena such as lateral inhibition and chromatic opponency. In this paper, we summarize our current view of retinal ganglion cell properties and pose a number of questions regarding underlying molecular mechanisms. As an example of one approach to understanding molecular mechanisms, we describe recent work on several POU domain transcription factors that are expressed in subsets of retinal ganglion cells and that appear to be involved in ganglion cell development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rod signals in the mammalian retina are thought to reach ganglion cells over the circuit rod-->rod depolarizing bipolar cell-->AII amacrine cell-->cone bipolar cells-->ganglion cells. A possible alternative pathway involves gap junctions linking the rods and cones, the circuit being rod-->cone-->cone bipolar cells-->ganglion cells. It is not clear whether this second pathway indeed relays rod signals to ganglion cells. We studied signal flow in the isolated rabbit retina with a multielectrode array, which allows the activity of many identified ganglion cells to be observed simultaneously while the preparation is stimulated with light and/or exposed to drugs. When transmission between rods and rod depolarizing bipolar cells was blocked by the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), rod input to all On-center and briskly responding Off-center ganglion cells was dramatically reduced as expected. Off responses persisted, however, in Off-center sluggish and On-Off direction-selective ganglion cells. Presumably these responses were generated by the alternative pathway involving rod-cone junctions. This APB-resistant pathway may carry the major rod input to Off-center sluggish and On-Off direction-selective ganglion cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. To evaluate quantitative and qualitative age-related changes in intrinsically photosensitive melanopsin-containing retinal ganglion cells (ipRGCs) in transgenic P23H rats, an animal model of autosomal dominant retinitis pigmentosa (RP) was examined. Methods. ipRGC density, morphology, and integrity were characterized by immunohistochemistry in retinas extracted from P23H and Sprague–Dawley (SD) rats aged 4, 12, and 18 months. Differences between SD and P23H rats throughout the experimental stages, as well as the interactions among them, were morphologically evaluated. Results. In rat retinas, we have identified ipRGCs with dendrites stratifying in either the outer margin (M1) or inner side (M2) of the inner plexiform layer, and in both the outer and inner plexuses (M3). A small group of M1 cells had their somas located in the inner nuclear layer (M1d). In SD rats, ipRGCs showed no significant changes associated with age, in terms of either mean cell density or the morphologic parameters analyzed. However, the mean density of ipRGCs in P23H rats fell by approximately 67% between 4 and 18 months of age. Moreover, ipRGCs in these animals showed a progressive age-dependent decrease in the dendritic area, the number of branch points and terminal neurite tips per cell, and the Sholl area. Conclusions. In the P23H rat model of retinitis pigmentosa, density, wholeness, and dendritic arborization of melanopsin-containing ganglion cells decrease in advanced stages of the degenerative disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The January, 1931 issue of Annals of Surgery honors James Ewing, "one of the leading active pathologists of the world."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The On-Off direction-selective ganglion cells (DSGCs) in the rabbit retina comprise four distinct subtypes that respond preferentially to image motion in four orthogonal directions; each subtype forms a regular territorial array, which is overlapped by the other three arrays. In this study, ganglion cells in the developing retina were injected with Neurobiotin, a gap-junction-permeable tracer, and the DSGCs were identified by their characteristic type 1 bistratified (BiS1) morphology. The complex patterns of tracer coupling shown by the BiSl ganglion cells changed systematically during the course of postnatal development. BiSl cells appear to be coupled together around the time of birth, but, over the next 10 days, BiSl cells decouple from each other, leading to the mature pattern in which only one subtype is coupled. At about postnatal day 5, before the ganglion cells become visually responsive, each of the BiSl cells commonly showed tracer coupling both to a regular array of neighboring BiSl cells, presumably destined to be DSGCs of the same subtype, and to a regular array of overlapping BiSl cells, presumably destined to be DSGCs of a different subtype. The gap-junction intercellular communication between subtypes of DSGCs with different preferred directions may play an important role in the differentiation of their synaptic connectivity, with respect to either the inputs that DSGCs receive from retinal interneurons or the outputs that DSGCs make to geniculate neurons. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australian lungfish Neoceratodus forsteri may be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% or the total population are significantly larger (> 400 mu m(2)) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6-1.9 cycles deg(-1), n = 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To study the population of intrinsically photosensitive retinal ganglion cells (melanopsin-expressing RGCs, m+RGCs) in P23H-1 rats, a rat model of inherited photoreceptor degeneration. Methods: At postnatal (P) times P30, P365, and P540, retinas from P23H dystrophic rats (line 1, rapid degeneration; and line 3, slow degeneration) and Sprague Dawley (SD) rats (control) were dissected as whole-mounts and immunodetected for melanopsin and/or Brn3a. The dendritic arborization of m+RGCs and the numbers of Brn3a+RGCs and m+RGCs were quantified and their retinal distribution and coexpression analyzed. Results: In SD rats, aging did not affect the population of Brn3a+RGCs or m+RGCs or the percentage that showed coexpression (0.27%). Young P23H-1 rats had a significantly lower number of Brn3a+RGCs and showed a further decline with age. The population of m+RGCs in young P23H-1 rats was similar to that found in SD rats and decreased by 22.6% and 28.2% at P365 and P540, respectively, similarly to the decrease of the Brn3a+RGCs. At these ages the m+RGCs showed a decrease of their dendritic arborization parameters, which was similar in both the P23H-1 and P23H-3 lines. The percentage of coexpression of Brn3a was, however, already significantly higher at P30 (3.31%) and increased significantly with age (10.65% at P540). Conclusions: Inherited photoreceptor degeneration was followed by secondary loss of Brn3a+RGCs and m+RGCs. Surviving m+RGCs showed decreased dendritic arborization parameters and increased coexpression of Brn3a and melanopsin, phenotypic and molecular changes that may represent an effort to resist degeneration and/or preferential survival of m+RGCs capable of synthesizing Brn3a.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. METHODS: CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. RESULTS: CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. CONCLUSIONS: The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph. METHODS: Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10 degrees ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40 degrees of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant. RESULTS: The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye. CONCLUSIONS: A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.