985 resultados para GALAXY: CENTER
Resumo:
The formation of clearly separated vertical graphenenanosheets on silicon nanograss support is demonstrated. The plasma-enabled, two-stage mask-free process produced self-organized vertical graphenes of a few carbon layers (as confirmed by advanced microanalysis), prominently oriented in the substrate center–substrate edge direction. It is shown that the width of the alignment zone depends on the substrate conductivity, and thus the electric field in the vicinity of the growth surface is responsible for the graphene alignment. This finding is confirmed by the Monte Carlo simulations of the ion flux distribution in the silicon nanograss pattern.
Resumo:
So called “knowledge work” is seen as integral to post-industrial society and, for some, information and communications technologies (ICTs) are critical enablers of the associated practices. Many still propose the technologically deterministic route of rolling out ICTs and expecting that users will, and indeed can, “download” what they know into a system that can then be used in a number of ways. This approach is usually underpinned by the predominant assumption that the system will be developed by one group (developers) and used by another group (users). In this paper, we report on an exploratory case study of the enactment of ICT supported knowledge work in a human resources contact center which illustrates the negotiable boundary between the developer and user in local level innovation processes. Drawing upon ideas from the social shaping of technology, we examine how discussions regarding producer-user relations in innovation processes require a degree of greater sophistication as we show how users often develop (or produce) technologies and work practices in situ—in this case, to enable knowledge work practices and contribute to the project of constructing the knowledge component of professional identity. Much has been made of contextualizing the user; further work is required to contextualize the developer as a user and understand the social actors in ICT innovation environments who straddle both domains
Resumo:
Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.
Resumo:
PURPOSE. To investigate effects of luminance and accommodation stimuli on pupil size and pupil center location and their implications for progressive addition lens wear. METHODS. Participants were young and older adult groups (n=20, 22±2 years, age range 18-25 years; n=19, 49±4 years, 45-58 years). A wave aberrometer included a relay system to allow a 12.5°x11° background for the internal fixation target. Participants viewed the target under a matrix of conditions with luminance levels 0.01, 3.7, 120 and 6100 cd/m² and with accommodation stimuli up to 6 diopters in 2 diopter steps. Pupil sizes and their centers, relative to limbus centers, were determined from anterior eye images. RESULTS. With luminance increase, reduction in pupil size was accentuated by increase in accommodation stimulus in the young, but not in the older, group. As luminance increased, pupil center location altered. This was nasally in both groups with an average shift of approximately 0.12mm. Relative to the lowest stimulus condition, the mean of the maximum absolute pupil center shifts was 0.26±0.08mm for both groups with individual shifts up to 0.5mm, findings consistent with previous studies. There was no significant effect of accommodation on pupil center locations for either age group, or evidence that location was influenced by the combination of luminance and accommodation stimulus that resulted in any particular pupil size. CONCLUSIONS. Variations in luminance and accommodation influence pupil size, but only the former affects pupil center location significantly. Pupil center shifts are too small to be of concern in fitting progressive addition lenses.
Resumo:
Purpose: To investigate effects of pupil shifts, occurring with changes in luminance and accommodation stimuli, on refraction components and higher-order aberrations. Method: Participants were young and older groups (n=20, 22±2 years, age range 18–25 years; n=19, 49±4 years, 45–58 years). Aberrations/refractions at 4 mm and 3 mm diameters were compared between centered and decentered pupils for low (background 0.01cd/m², 0D), and high (6100cd/m², 4D or 6D) stimuli. Decentration was the difference between pupil centers for low and high stimuli. Clinical important changes with decentration were: M ±0.50D or ±0.25D, J180 and J45 ±0.25D or ±0.125D, HORMS ±0.05m, C(3, 1) ±0.05m, C(4, 0) ±0.05m. Results: Because of small pupil shifts in most participants (mean 0.26mm), there were few important changes in most refraction components and higher-order aberration terms. However, M changed by >0.25 D for a third of participants with 4mm pupils. When determining refractions from 2nd-6th order aberration coefficients, the more stringent criteria gave 76/ 534 (14%) possible important changes. Some participants had large pupil shifts with considerable aberration changes. Comparisons at the high stimulus were possible for only 11 participants because of small pupils. When refractions were determined from 2nd order aberration coefficients only, there were only 35 (7%) important changes for the more stringent criteria. Conclusion: Usually pupil shifts with changes in stimulus conditions have little influence on aberrations, but they can with high shifts. The number of aberrations orders that are considered as contributing to refraction influences the proportion of cases that might be considered clinically important.
Resumo:
The phase relations have been investigated experimentally at 200 and 500 MPa as a function of water activity for one of the least evolved (Indian Batt Rhyolite) and of a more evolved rhyolite composition (Cougar Point Tuff XV) from the 12·8-8·1 Ma Bruneau-Jarbidge eruptive center of the Yellowstone hotspot. Particular priority was given to accurate determination of the water content of the quenched glasses using infrared spectroscopic techniques. Comparison of the composition of natural and experimentally synthesized phases confirms that high temperatures (>900°C) and extremely low melt water contents (<1·5 wt % H₂O) are required to reproduce the natural mineral assemblages. In melts containing 0·5-1·5 wt % H₂O, the liquidus phase is clinopyroxene (excluding Fe-Ti oxides, which are strongly dependent on fO₂), and the liquidus temperature of the more evolved Cougar Point Tuff sample (BJR; 940-1000°C) is at least 30°C lower than that of the Indian Batt Rhyolite lava sample (IBR2; 970-1030°C). For the composition BJR, the comparison of the compositions of the natural and experimental glasses indicates a pre-eruptive temperature of at least 900°C. The composition of clinopyroxene and pigeonite pairs can be reproduced only for water contents below 1·5 wt % H₂O at 900°C, or lower water contents if the temperature is higher. For the composition IBR2, a minimum temperature of 920°C is necessary to reproduce the main phases at 200 and 500 MPa. At 200 MPa, the pre-eruptive water content of the melt is constrained in the range 0·7-1·3 wt % at 950°C and 0·3-1·0 wt % at 1000°C. At 500 MPa, the pre-eruptive temperatures are slightly higher (by 30-50°C) for the same ranges of water concentration. The experimental results are used to explore possible proxies to constrain the depth of magma storage. The crystallization sequence of tectosilicates is strongly dependent on pressure between 200 and 500 MPa. In addition, the normative Qtz-Ab-Or contents of glasses quenched from melts coexisting with quartz, sanidine and plagioclase depend on pressure and melt water content, assuming that the normative Qtz and Ab/Or content of such melts is mainly dependent on pressure and water activity, respectively. The combination of results from the phase equilibria and from the composition of glasses indicates that the depth of magma storage for the IBR2 and BJR compositions may be in the range 300-400 MPa (13 km) and 200-300 MPa (10 km), respectively.
Resumo:
The Bruneau-Jarbidge eruptive center (BJEC) in the central Snake River Plain, Idaho, USA consists of the Cougar Point Tuff (CPT), a series of ten, high-temperature (900-1000°C) voluminous ignimbrites produced over the explosive phase of volcanism (12.8-10.5 Ma) and more than a dozen equally high-temperature rhyolite lava flows produced during the effusive phase (10.5-8 Ma). Spot analyses by ion microprobe of oxygen isotope ratios in 210 zircons demonstrate that all of the eruptive units of the BJEC are characterized by zircon δ¹⁸O values ≤ 2.5‰, thus documenting the largest low δ¹⁸O silicic volcanic province known on Earth (>10⁴ km³). There is no evidence for voluminous normal δ¹⁸O magmatism at the BJEC that precedes generation of low δ¹⁸O magmas as there is at other volcanic centers that generate low δ¹⁸O magmas such as Heise and Yellowstone. At these younger volcanic centers of the hotspot track, such low δ¹⁸O magmas represent ~45 % and ~20% respectively of total eruptive volumes. Zircons in all BJEC tuffs and lavas studied (23 units) document strong δ¹⁸O depletion (median CPT δ¹⁸OZrc = 1.0‰, post-CPT lavas = 1.5‰) with the third member of the CPT recording an excursion to minimum δ¹⁸O values (δ¹⁸OZrc= -1.8‰) in a supereruption > 2‰ lower than other voluminous low δ¹⁸O rhyolites known worldwide (δ¹⁸OWR ≤0.9 vs. 3.4‰). Subsequent units of the CPT and lavas record a progressive recovery in δ¹⁸OZrc to ~2.5‰ over a ~ 4 m.y. interval (12 to 8 Ma). We present detailed evidence of unit-to-unit systematic patterns in O isotopic zoning in zircons (i.e. direction and magnitude of Δcore-rim), spectrum of δ¹⁸O in individual units, and zircon inheritance patterns established by re-analysis of spots for U-Th-Pb isotopes by LA-ICPMS and SHRIMP. In conjunction with mineral thermometry and magma compositions, these patterns are difficult to reconcile with the well-established model for "cannibalistic" low δ¹⁸O magma genesis at Heise and Yellowstone. We present an alternative model for the central Snake River Plain using the modeling results of Leeman et al. (2008) for ¹⁸O depletion as a function of depth in a mid-upper crustal protolith that was hydrothermally altered by infiltrating meteoric waters prior to the onset of silicic magmatism. The model proposes that BJEC silicic magmas were generated in response to the propagation of a melting front, driven by the incremental growth of a vast underlying mafic sill complex, over a ~5 m.y. interval through a crustal volume in which a vertically asymmetric δ¹⁸OWR gradient had previously developed that was sharply inflected from ~ -1 to 10‰ at mid-upper crustal depths. Within the context of the model, data from BJEC zircons are consistent with incremental melting and mixing events in roof zones of magma reservoirs that accompany surfaceward advance of the coupled mafic-silicic magmatic system.
Resumo:
The Bruneau–Jarbidge eruptive center of the central Snake River Plain in southern Idaho, USA produced multiple rhyolite lava flows with volumes of <10 km³ to 200 km³ each from ~11.2 to 8.1 Ma, most of which follow its climactic phase of large-volume explosive volcanism, represented by the Cougar Point Tuff, from 12.7 to 10.5 Ma. These lavas represent the waning stages of silicic volcanism at a major eruptive center of the Yellowstone hotspot track. Here we provide pyroxene compositions and thermometry results from several lavas that demonstrate that the demise of the silicic volcanic system was characterized by sustained, high pre-eruptive magma temperatures (mostly ≥950 °C) prior to the onset of exclusively basaltic volcanism at the eruptive center. Pyroxenes display a variety of textures in single samples, including solitary euhedral crystals as well as glomerocrysts, crystal clots and annealed microgranular inclusions of pyroxene ±magnetite± plagioclase. Pigeonite and augite crystals are unzoned, and there are no detectable differences in major and minor element compositions according to textural variety — mineral compositions in the microgranular inclusions and crystal clots are identical to those of phenocrysts in the host lavas. In contrast to members of the preceding Cougar Point Tuff that host polymodal glass and mineral populations, pyroxene compositions in each of the lavas are characterized by single rather than multiple discrete compositional modes. Collectively, the lavas reproduce and extend the range of Fe–Mg pyroxene compositional modes observed in the Cougar Point Tuff to more Mg-rich varieties. The compositionally homogeneous populations of pyroxene in each of the lavas, as well as the lack of core-to-rim zonation in individual crystals suggest that individual eruptions each were fed by compositionally homogeneous magma reservoirs, and similarities with the Cougar Point Tuff suggest consanguinity of such reservoirs to those that supplied the polymodal Cougar Point Tuff. Pyroxene thermometry results obtained using QUILF equilibria yield pre-eruptive magma temperatures of 905 to 980 °C, and individual modes consistently record higher Ca content and higher temperatures than pyroxenes with equivalent Fe–Mg ratios in the preceding Cougar Point Tuff. As is the case with the Cougar Point Tuff, evidence for up-temperature zonation within single crystals that would be consistent with recycling of sub- or near-solidus material from antecedent magma reservoirs by rapid reheating is extremely rare. Also, the absence of intra-crystal zonation, particularly at crystal rims, is not easily reconciled with cannibalization of caldera fill that subsided into pre-eruptive reservoirs. The textural, compositional and thermometric results rather are consistent with minor re-equilibration to higher temperatures of the unerupted crystalline residue from the explosive phase of volcanism, or perhaps with newly generated magmas from source materials very similar to those for the Cougar Point Tuff. Collectively, the data suggest that most of the pyroxene compositional diversity that is represented by the tuffs and lavas was produced early in the history of the eruptive center and that compositions across this range were preserved or duplicated through much of its lifetime. Mineral compositions and thermometry of the multiple lavas suggest that unerupted magmas residual to the explosive phase of volcanism may have been stored at sustained, high temperatures subsequent to the explosive phase of volcanism. If so, such persistent high temperatures and large eruptive magma volumes likewise require an abundant and persistent supply of basalt magmas to the lower and/or mid-crust, consistent with the tectonic setting of a continental hotspot.
Resumo:
Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.
Resumo:
Introduction Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Methods Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. Results At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. Conclusions DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Resumo:
UVPES studies and ab initio and DFT computations have been done on the benzene...ICl complex; electron spectral data and computed orbital energies show that donor orbitals are stabilized and acceptor orbitals are destabilized due to complexation. Calculations predict an oblique structure for the complex in which the interacting site is a C=C bond center in the donor and iodine atom in the acceptor, in full agreement with earlier experimental reports. BSSE-corrected binding energies closely match the enthalpy of complexation reported, and the NBO analysis clearly reveals the involvement of the pi orbital of benzene and the sigma* orbital of ICl in the complex.
Resumo:
High microwave susceptibility of NaH2PO4 . 2H(2)O has been discovered, This hydrated acid phosphate of sodium can be heated upto 1000 K or more when exposed to 2.45 GHz microwaves. Using this, a novel microwave-assisted preparation of a number of important crystalline and glassy materials with NASICON-type chemistry has been accomplished in less than 8 min which is only a fraction of the time required for conventional synthetic procedures, The present single-shot approach to the preparation of phosphates is attractive in terms of its simplicity, rapidity, and general applicability, A ''step-ladder'' heating mechanism has been proposed to account for the high microwave absorbing ability of NaH2PO4 . 2H(2)O.
Resumo:
The atomic hydrogen gas (H I) disk in the outer region (beyond similar to 10 kpc from the center) of Milky Way can provide valuable information about the structure of the dark matter halo. The recent three-dimensional thickness map of the outer H I disk from the all sky 21 cm line Leiden/Argentine/Bonn survey, gives us a unique opportunity to investigate the structure of the dark matter halo of Milky Way in great detail. A striking feature of this new survey is the north-south (N-S) asymmetry in the thickness map of the atomic hydrogen gas. Assuming vertical hydrostatic equilibrium under the total potential of the Galaxy, we derive the model thickness map of the H I gas. We show that simple axisymmetric halo models, such as softened isothermal halo (producing a flat rotation curve with V-c similar to 220 km s(-1)) or any halo with density falling faster than the isothermal one, are not able to explain the observed radial variation of the gas thickness. We also show that such axisymmetric halos along with different H I velocity dispersion in the two halves, cannot explain the observed asymmetry in the thickness map. Amongst the nonaxisymmetric models, it is shown that a purely lopsided (m = 1, first harmonic) dark matter halo with reasonable H I velocity dispersion fails to explain the N-S asymmetry satisfactorily. However, we show that by superposing a second harmonic (m = 2) out of phase onto a purely lopsided halo, e. g., our best fit and more acceptable model A (with parameters epsilon(1)(h) = 0.2, epsilon(2)(h) = 0.18, and sigma(H I) = 8.5 km s(-1)) can provide an excellent fit to the observation and reproduce the N-S asymmetry naturally. The emerging picture of the asymmetric dark matter halo is supported by the. cold dark matter halos formed in the cosmological N-body simulation.
Resumo:
Ursula Schlosstein born Gottschalk in her nursery school, Allens Lane Art Center.