888 resultados para Fuzzy Domain Ontology, Fuzzy Subsumption, Granular Computing, Granular IR Systems, Information Retrieval
Resumo:
Domain specific information retrieval has become in demand. Not only domain experts, but also average non-expert users are interested in searching domain specific (e.g., medical and health) information from online resources. However, a typical problem to average users is that the search results are always a mixture of documents with different levels of readability. Non-expert users may want to see documents with higher readability on the top of the list. Consequently the search results need to be re-ranked in a descending order of readability. It is often not practical for domain experts to manually label the readability of documents for large databases. Computational models of readability needs to be investigated. However, traditional readability formulas are designed for general purpose text and insufficient to deal with technical materials for domain specific information retrieval. More advanced algorithms such as textual coherence model are computationally expensive for re-ranking a large number of retrieved documents. In this paper, we propose an effective and computationally tractable concept-based model of text readability. In addition to textual genres of a document, our model also takes into account domain specific knowledge, i.e., how the domain-specific concepts contained in the document affect the document’s readability. Three major readability formulas are proposed and applied to health and medical information retrieval. Experimental results show that our proposed readability formulas lead to remarkable improvements in terms of correlation with users’ readability ratings over four traditional readability measures.
Resumo:
This paper discusses an document discovery tool based on formal concept analysis. The program allows users to navigate email using a visual lattice metaphor rather than a tree. It implements a virtual file structure over email where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in email discovery. The system described provides more flexibility in retrieving stored emails than what is normally available in email clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mode of access: Internet.
Resumo:
This paper presents fuzzy clustering algorithms to establish a grassroots ontology – a machine-generated weak ontology – based on folksonomies. Furthermore, it describes a search engine for vaguely associated terms and aggregates them into several meaningful cluster categories, based on the introduced weak grassroots ontology. A potential application of this ontology, weblog extraction, is illustrated using a simple example. Added value and possible future studies are discussed in the conclusion.
Resumo:
In order to address problems of information overload in digital imagery task domains we have developed an interactive approach to the capture and reuse of image context information. Our framework models different aspects of the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. The approach allows us to gauge a measure of a user's intentions as they complete goal-directed image tasks. As users analyze retrieved imagery their interactions are captured and an expert task context is dynamically constructed. This human expertise, proficiency, and knowledge can then be leveraged to support other users in carrying out similar domain tasks. We have applied our techniques to two multimedia retrieval applications for two different image domains, namely the geo-spatial and medical imagery domains. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the colour information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centred on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation
Resumo:
Eleven coupled model intercomparison project 3 based global climate models are evaluated for the case study of Upper Malaprabha catchment, India for precipitation rate. Correlation coefficient, normalised root mean square deviation, and skill score are considered as performance indicators for evaluation in fuzzy environment and assumed to have equal impact on the global climate models. Fuzzy technique for order preference by similarity to an ideal solution is used to rank global climate models. Top three positions are occupied by MIROC3, GFDL2.1 and GISS with relative closeness of 0.7867, 0.7070, and 0.7068. IPSL-CM4, NCAR-PCMI occupied the tenth and eleventh positions with relative closeness of 0.4959 and 0.4562.
Resumo:
Thesis (Master's)--University of Washington, 2015