325 resultados para Fungicides.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work aimed to evaluate the efficiency of fungicides in controlling in vitro and in vivo the causal agents of anthracnose (Colletotrichum gloeosporioides and C. acutatum) and black spot (Guignardia psidii) and evaluate the effect of alternative products to control these diseases. Inhibition of mycelial growth of the pathogens was evaluated for ten fungicides at concentrations of 1, 10 and 100 mg L-1 of active ingredient in potato-dextrose-agar medium. The effectiveness of the fungicides azoxystrobin + difenoconazole, cyproconazole, pyraclostrobin, tebuconazole and tebuconazole + trifloxystrobin in controlling disease incidence and severity of anthracnose, through applications in the field, was measured in fruits collected at three stages of maturation, according to the skin color ( dark green, light green and yellowish green). In postharvest dipping of fruits, the products evaluated were citric acid, peracetic acid, salicylic acid, sodium bicarbonate, chlorine dioxide, Ecolife (R) and chitosan. The fungicides azoxystrobin + difenoconazole, pyraclostrobin, tebuconazole and trifloxystrobin + tebuconazole were highly effective in inhibiting the in vitro mycelial growth of G. psidii and moderately to highly effective in inhibiting C. acutatum and C. gloeosporioides. In field conditions, the fungicide azoxystrobin + difenoconazole was effective in controlling anthracnose and black spot in fruit at three maturity stage ( skin color yellowish green). The alternative products tested were ineffective in the curative control of anthracnose and early blight at postharvest of guava.
Resumo:
This study was aimed to correlate the results of relative germination from in vitro tests by trifloxystrobin with those of qPCR on a wide range of V. inaequalis populations and monoconidial isolates. Samples were collected in Italian and Turkish distinct locations from orchards with different scab management. In this study, an allele-specific qPCR with primer sets designed was successfully developed to quantitatively determine the frequency of QoI-resistant allele G143A in populations and monoconidial isolates of V. inaequalis. qPCR followed a similar pattern to that obtained using in vitro conidial germination test in very sensitive and very resistant populations. However, the variability between two test results was observed in hetereogenous populations. Therefore, the results of correlations between in vitro and qPCR showed a positive but not very high correlation for Venturia inaequalis populations (R2=0.70). On the contrary, this correlation between two assessment methods was very high for monoconidial isolates (R2=0.92). Results obtained in quantitative PCR and from traditional spore germination assay differed for the same fungal population and in some cases, it is difficult to assess the resistance in the field by only qPCR. It was concluded that it is not always possible to correlate the frequency of detection of the mutation with biological assessment. In such situations, monitoring by molecular techniques must be supported by standard in vitro resistance assessments and observation of field performance in order to have correct conclusions.
Resumo:
Applications of foliar fungicides on soybeans have been shown to reduce disease pressure and protect yield under the right conditions, especially in environments that have very wet or humid conditions. In the past decade, fungicide use in Iowa has increased. Initially, growers were concerned with the potential threat of soybean rust, which is controlled effectively by foliar fungicides. In Iowa, however, there has not been any case of yield reduction due to soybean rust. New potential purposes for foliar fungicides include “plant health” benefits and the reduction of foliar diseases endemic in Iowa such as Septoria brown spot, Cercospora leaf blight, and frogeye leaf spot. Currently what is not known is how the efficacy of fungicides is affected when agricultural practices change. Our question: How does plant population affect the efficacy of fungicides?
Resumo:
Fungicides were rarely used on hybrid corn prior to 2007, however, in the past few years, some farmers have included fungicides in their common crop production, particularly as the value of grain has increased. Fungicides are recommended for foliar disease management to protect yield potential. There also have been reports of increased yields in the absence of disease. A number of fungicides are registered for use on corn. The objectives of this project were to evaluate the yield response of hybrid corn to foliar fungicide application at various timings.
Resumo:
Several new fungicide products are either available or will be available for management of white mold of soybean. This study was conducted at the Muscatine Island Research and Demonstration Farm, and one farmer’s field in northeast Iowa.
Resumo:
Use of foliar fungicides and insecticides are an effective strategy for managing foliar diseases on soybean. There are many different fungicides and insecticides available for use currently in Iowa. Iowa State University personnel assessed the success of fungicides and insecticides across Iowa. This study was conducted at six locations: Sutherland (NW), Kanawha (NC), Nashua (NE), Ames (central), Crawfordsville (SE), and Lewis (SW) research farms (Figure 1).
Resumo:
Fungicide use on hybrid corn has increased considerably in the past four growing seasons primarily due to reports of increased yields, even in the absence of disease and higher corn prices. A number of fungicides are registered for use on corn. The objectives of this project were to 1) assess the effect of timing of application of fungicides on standability, 2) evaluate the yield response of hybrid corn to foliar fungicide application, and 3) to discern differences, if any, between fungicide products.
Resumo:
Use of foliar fungicides and insecticides are an effective strategy for managing foliar diseases of soybean. There are many different fungicides and insecticides available for use currently in Iowa. Iowa State University personnel assessed the success of fungicides and insecticides across Iowa. This study was conducted at six locations: Sutherland (NW), Kanawha (NC), Nashua (NE), Ames (central), Crawfordsville (SE), and Lewis (SW) research farms (Figure 1).
Resumo:
Fungicide use on hybrid corn has increased considerably in the past three growing seasons primarily due to reports of increased yields, even in the absence of disease and higher corn prices. A number of fungicides are registered for use on corn. The objectives of this project were to 1) evaluate the yield response of hybrid corn to foliar fungicide application, 2) compare the yield response of various products and timing of application, and 3) to assess the effect of fungicide application on stalk rot development.
Resumo:
Use of foliar fungicides and insecticides are an effective strategy for managing foliar diseases of soybean. There are many different fungicides and insecticides available for use currently in Iowa. Iowa State University personnel assessed the success of fungicides and insecticides across Iowa. This study was conducted at six locations: Sutherland (NW), Kanawha (NC), Nashua (NE), Ames (central), Crawfordsville (SE), and Lewis (SW) research farms (Figure 1).
Resumo:
Fungicides were rarely used on hybrid corn prior to 2007, however, in the past few years some farmers have made fungicides a regular input in their crop production, particularly as the value of grain has increased. Fungicides are recommended for foliar disease management to protect yield potential. There have also been reports of increased yields in the absence of disease. A number of fungicides are registered for use on corn. The objectives of this project were to evaluate the yield response of hybrid corn to foliar fungicide application at various timings.
Resumo:
Use of foliar fungicides and insecticides are an effective strategy for managing foliar diseases of soybean. There are many different fungicides and insecticides available for use currently in Iowa. Iowa State University personnel assessed the success of fungicides and insecticides across Iowa. This study was conducted at six locations: Sutherland (NW), Kanawha (NC), Nashua (NE), Ames (central), Crawfordsville (SE), and Lewis (SW) research farms (Figure 1).
Resumo:
Mode of access: Internet.