996 resultados para Froude, James Anthony, 1818-1894.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
http://www.archive.org/details/thoughtsfrommode00walsuoft
Resumo:
by A. Trollope, J. A. Froude and Lady Barker
Resumo:
Of the original 143 articles of evidence, 23 are entirely reworked, and 47 more altered to accomodate an American audience.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Bibliographical note": p. [483]-486.
Resumo:
Mode of access: Internet.
Resumo:
Banana leaf streak disease, caused by several species of Banana streak virus (BSV), is widespread in East Africa. We surveyed for this disease in Uganda and Kenya, and used rolling-circle amplification (RCA) to detect the presence of BSV in banana. Six distinct badnavirus sequences, three from Uganda and three from Kenya, were amplified for which only partial sequences were previously available. The complete genomes were sequenced and characterised. The size and organisation of all six sequences was characteristic of other badnaviruses, including conserved functional domains present in the putative polyprotein encoded by open reading frame (ORF) 3. Based on nucleotide sequence analysis within the reverse transcriptase/ribonuclease H-coding region of open reading frame 3, we propose that these sequences be recognised as six new species and be designated as Banana streak UA virus, Banana streak UI virus, Banana streak UL virus, Banana streak UM virus, Banana streak CA virus and Banana streak IM virus. Using PCR and species-specific primers to test for the presence of integrated sequences, we demonstrated that sequences with high similarity to BSIMV only were present in several banana cultivars which had tested negative for episomal BSV sequences.
Resumo:
Bananas are hosts to a large number of banana streak virus (BSV) species. However, diagnostic methods for BSV are inadequate because of the considerable genetic and serological diversity amongst BSV isolates and the presence of integrated BSV sequences in some banana cultivars which leads to false positives. In this study, a sequence non-specific, rolling-circle amplification (RCA) technique was developed and shown to overcome these limitations for the detection and subsequent characterisation of BSV isolates infecting banana. This technique was shown to discriminate between integrated and episomal BSV DNA, specifically detecting the latter in several banana cultivars known to contain episomal and/or integrated sequences of Banana streak Mysore virus (BSMyV), Banana streak OL virus (BSOLV) and Banana streak GF virus (BSGFV). Using RCA, the presence of BSMyV and BSOLV was confirmed in Australia, while BSOLV, BSGFV, Banana streak Uganda I virus (BSUgIV), Banana streak Uganda L virus (BSUgLV) and Banana streak Uganda M virus (BSUgMV) were detected in Uganda. This is the first confirmed report of episomally-derived BSUglV, BSUgLV and BSUgMV in Uganda. As well as its ability to detect BSV, RCA was shown to detect two other pararetroviruses, Sugarcane bacilliform virus in sugarcane and Cauliflower mosaic virus in turnip.
Resumo:
Bananas are one of the world's most important food crops, providing sustenance and income for millions of people in developing countries and supporting large export industries. Viruses are considered major constraints to banana production, germplasm multiplication and exchange, and to genetic improvement of banana through traditional breeding. In Africa, the two most important virus diseases are bunchy top, caused by Banana bunchy top virus (BBTV), and banana streak disease, caused by Banana streak virus (BSV). BBTV is a serious production constraint in a number of countries within/bordering East Africa, such as Burundi, Democratic Republic of Congo, Malawi, Mozambique, Rwanda and Zambia, but is not present in Kenya, Tanzania and Uganda. Additionally, epidemics of banana streak disease are occurring in Kenya and Uganda. The rapidly growing tissue culture (TC) industry within East Africa, aiming to provide planting material to banana farmers, has stimulated discussion about the need for virus indexing to certify planting material as virus-free. Diagnostic methods for BBTV and BSV have been reported and, for BBTV, PCR-based assays are reliable and relatively straightforward. However for BSV, high levels of serological and genetic variability and the presence of endogenous virus sequences within the banana genome complicate diagnosis. Uganda has been shown to contain the greatest diversity in BSV isolates found anywhere in the world. A broad-spectrum diagnostic test for BSV detection, which can discriminate between endogenous and episomal BSV sequences, is a priority. This PhD project aimed to establish diagnostic methods for banana viruses, with a particular focus on the development of novel methods for BSV detection, and to use these diagnostic methods for the detection and characterisation of banana viruses in East Africa. A novel rolling-circle amplification (RCA) method was developed for the detection of BSV. Using samples of Banana streak MY virus (BSMYV) and Banana streak OL virus (BSOLV) from Australia, this method was shown to distinguish between endogenous and episomal BSV sequences in banana plants. The RCA assay was used to screen a collection of 56 banana samples from south-west Uganda for BSV. RCA detected at least five distinct BSV isolates in these samples, including BSOLV and Banana streak GF virus (BSGFV) as well as three BSV isolates (Banana streak Uganda-I, -L and -M virus) for which only partial sequences had been previously reported. These latter three BSV had only been detected using immuno-capture (IC)-PCR and thus were possible endogenous sequences. In addition to its ability to detect BSV, the RCA protocol was also demonstrated to detect other viruses within the family Caulimoviridae, including Sugar cane bacilliform virus, and Cauliflower mosaic virus. Using the novel RCA method, three distinct BSV isolates from both Kenya and Uganda were identified and characterised. The complete genome of these isolates was sequenced and annotated. All six isolates were shown to have a characteristic badnavirus genome organisation with three open reading frames (ORFs) and the large polyprotein encoded by ORF 3 was shown to contain conserved amino acid motifs for movement, aspartic protease, reverse transcriptase and ribonuclease H activities. As well, several sequences important for expression and replication of the virus genome were identified including the conserved tRNAmet primer binding site present in the intergenic region of all badnaviruses. Based on the International Committee on Taxonomy of Viruses (ICTV) guidelines for species demarcation in the genus Badnavirus, these six isolates were proposed as distinct species, and named Banana streak UA virus (BSUAV), Banana streak UI virus (BSUIV), Banana streak UL virus (BSULV), Banana streak UM virus (BSUMV), Banana streak CA virus (BSCAV) and Banana streak IM virus (BSIMV). Using PCR with species-specific primers designed to each isolate, a genotypically diverse collection of 12 virus-free banana cultivars were tested for the presence of endogenous sequences. For five of the BSV no amplification was observed in any cultivar tested, while for BSIMV, four positive samples were identified in cultivars with a B-genome component. During field visits to Kenya, Tanzania and Uganda, 143 samples were collected and assayed for BSV. PCR using nine sets of species-specific primers, and RCA, were compared for BSV detection. For five BSV species with no known endogenous counterpart (namely BSCAV, BSUAV, BSUIV, BSULV and BSUMV), PCR was used to detect 30 infections from the 143 samples. Using RCA, 96.4% of these samples were considered positive, with one additional sample detected using RCA which was not positive using PCR. For these five BSV, PCR and RCA were both useful for identifying infected samples, irrespective of the host cultivar genotype (Musa A- or B-genome components). For four additional BSV with known endogenous counterparts in the M. balbisiana genome (BSOLV, BSGFV, BSMYV and BSIMV), PCR was shown to detect 75 infections from the 143 samples. In 30 samples from cultivars with an A-only genome component there was 96.3% agreement between PCR positive samples and detection using RCA, again demonstrating either PCR or RCA are suitable methods for detection. However, in 45 samples from cultivars with some B-genome component, the level of agreement between PCR positive samples and RCA positive samples was 70.5%. This suggests that, in cultivars with some B-genome component, many infections were detected using PCR which were the result of amplification of endogenous sequences. In these latter cases, RCA or another method which discriminates between endogenous and episomal sequences, such as immuno-capture PCR, is needed to diagnose episomal BSV infection. Field visits were made to Malawi and Rwanda to collect local isolates of BBTV for validation of a PCR-based diagnostic assay. The presence of BBTV in samples of bananas with bunchy top disease was confirmed in 28 out of 39 samples from Malawi and all nine samples collected in Rwanda, using PCR and RCA. For three isolates, one from Malawi and two from Rwanda, the complete nucleotide sequences were determined and shown to have a similar genome organisation to previously published BBTV isolates. The two isolates from Rwanda had at least 98.1% nucleotide sequence identity between each of the six DNA components, while the similarity between isolates from Rwanda and Malawi was between 96.2% and 99.4% depending on the DNA component. At the amino acid level, similarities in the putative proteins encoded by DNA-R, -S, -M, - C and -N were found to range between 98.8% to 100%. In a phylogenetic analysis, the three East African isolates clustered together within the South Pacific subgroup of BBTV isolates. Nucleotide sequence comparison to isolates of BBTV from outside Africa identified India as the possible origin of East African isolates of BBTV.