998 resultados para Free gingival graft
Resumo:
The demixing in an LCST mixture of PS/PVME (polystyrene/poly(vinyl methyl ether)) was probed here by melt rheology in the presence of gold nanoparticles which were densely coated with varying graft lengths of PS. The graft density for the gold nanoparticles coated with 3 kDa PS was ca. Sigma = 1.7 chains/nm(2), and that for 53 kDa PS was ca. Sigma = 1.2 chains/nm(2). The evolution of morphology, as the blends transit through the metastable and the unstable envelopes of the phase diagram, and the localization of the gold nanoparticles upon demixing were monitored using in situ hot-stage AFM and confocal Raman imaging. Interestingly, gold nanoparticles coated with 3 kDa polystyrene (PS(3 kDa)-g-nAu) were localized in the PVME phase, whereas gold nanoparticles coated with 53 kDa polystyrene (PS(53 kDa)-g-nAu) were localized in the PS phase of the blend. While the localization of PS(3 kDa)-g-nAu in the PVME phase can be expected to be of entropic origin due to expulsion from the PS phase as R-g,R-matrix chains > R-g,R-grafted chains (where R-g is the radius of gyration of the polymer chain), the localization of PS(53 kDa)-g-nAu in the PS phase is believed to be facilitated by favorable melt/graft interactions. The latter nanoparticles also delayed the demixing by 12 degrees C with respect to the neat mixture. The observed changes were addressed in context to enthalpic interactions between the grafted PS and the free PS, the entropic losses (deformational entropic losses on blending, translational entropic loss of the free PS, and the conformational entropic loss of the grafted PS), and the interface of the grafted and the free chains.
Resumo:
Graft chain propagation rate coefficients (k(p.g)) for grafting AA onto linear low density polyethylene (LLDPE) in the melt in ESR tubes have been measured via Fourier transform infrared (FTIR) spectroscopy and electron spin resonance (ESR) spectroscopy in the temperature range from 130 to 170 degrees C. To exclude the effect of homopolymerization on the grafting. the LLDPE was pre-irradiated in the air by electron beam to generate the peroxides and then treated with iodide solution to eliminating one kind of peroxides, hydroperoxide. The monomer conversion is determined by FTIR and the chain propagation free-radical concentration is deduced from the double integration of the well-resolved ESR spectra, consisting nine lines in the melt. The temperature dependence of k(p.g) is expressed:The magnitude of k(p.g) from FTIR and ESR analysis is in good agreement with the theoretical data deduced from ethylene-AA copolymerization, suggesting this method could reliably and directly provide the propagation rate coefficient. The comparison of k(p.g) with the data extrapolated from solution polymerization at modest temperature indicates that the extrapolated data might not be entirely fitting to discuss the kinetics behavior in the melt.
Resumo:
Rare earth oxide, neodymium oxide (Nd2O3), CO-catalyzed melt grafting of maleic anhydride (MAH) onto co-polypropylene (co-PP) in the presence of dicumyl peroxide (DCP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 as a coagent leads to an enhancement in both MFR and the grafting degree of MAH, along with a simultaneous decrease in the gel content. When the Nd2O3 concentration is 6.0 mmol%, the increment of the grafting degree of MAH maximally is up to about 20% compared with the related system without adding Nd2O3, and the gel content decreases simultaneously to a very low level of about 3%. Attenuated total reflection FTIR (ATR-FTIR) indicates that the gel in the graft copolymers mainly arise from the cross-linking reaction between ethylene units of co-PP. A reasonable reaction mechanism has been put forward on the basis of our experimental results and other mechanisms reported in the literature. We also tentatively explain above results by means of synergistic effect between DCP and Nd2O3, which causes a higher concentration of the macroradical, in particular the tertiary macroradical.
Resumo:
The graft copolymer of high impact polystyrene (HIPS) grafted with malice anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by IR analyses and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5 wt% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with the PA6 during melt mixing the two components. The compatibility of HIPS-g-MA in the HIPS/PA6 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical properties of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA6. The tensile mechanical properties of the prepared blends were investigated and the fracture surfaces of the blends were examined by means of the scanning electron microscope (SEM). The improved adhesion in a 16%HIPS/75%PA6 blend with 9%HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA6 connecting HIPS particles was observed.
Resumo:
The graft copolymer of high-impact polystyrene (HIPS) grafted with maleic anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by infrared analyses, and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with polyamide 1010 (PA1010) during melt mixing of the two components. The compatibility of HIPS-g-MA. in the HIPS/PA1010 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical behavior of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA1010. The tensile mechanical properties of the prepared blends were investigated, and the fracture surfaces of the blends were examined by means of the scanning electron microscope. The improved adhesion in a 15% HIPS/75% PA1010 blend with 10% HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA1010 connecting HIPS particles was observed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Although Chronic Myeloid Leukaemia (CML) can be treated successfully with allogeneic bone marrow transplantation (BMT), leukaemia relapse remains a significant clinical problem. Molecular monitoring of the post transplant marrow can be useful in predicting relapse particularly in CML patients where the Philadelphia chromosome or its molecular counterpart, the BCR-ABL fusion messenger RNA can be used as a leukaemia specific marker of minimal residual disease (MRD). We have investigated chimaerism (using polymerase chain reaction of short tandem repeat sequences (STR-PCR)) and MRD status (using reverse transcriptase PCR of the BCR-ABL fusion mRNA) in a serial fashion in 18 patients who were in clinical and haematological remission post allogeneic BMT for chronic phase CML. Eleven patients exhibited complete donor chimaerism with no evidence of minimal residual disease. Five patients had transient or low level stable MC. Late MC and MRD was observed in two patients who relapsed > 6 years after T cell depleted BMT for CML. Thus STR-PCR is an appropriate screening test in the post transplant setting for CML patients, but those patients exhibiting mixed haemopoietic chimaerism should also be monitored using a leukaemia specific sensitive molecular assay.
Resumo:
Background: The aim of this study was to evaluate root coverage of gingival recessions and to compare graft vascularization in smokers and non-smokers. Methods: Thirty subjects, 15 smokers and 15 non-smokers, were selected. Each subject had one Miller Class I or II recession in a non-molar tooth. Clinical measurements of probing depth (PD), relative clinical attachment level (CAL), gingival recession (GR), and width of keratinized tissue (KT) were determined at baseline and 3 and 6 months after surgery. The recessions were treated surgically with a coronally positioned flap associated with a subepithelial connective tissue graft. A small portion of this graft was prepared for immunohistochemistry. Blood vessels were identified and counted by expression of factor VIII-related antigen-stained endothelial cells. Results: Intragroup analysis showed that after 6 months there a was gain in CAL, a decrease in GR, and an increase in KT for both groups (P<0.05), whereas changes in PD were not statistically significant. Smokers had less root coverage than non-smokers (58.02% +/- 19.75% versus 83.35% +/- 18.53%; P<0.05). Furthermore, the smokers had more GR (1.48 +/- 0.79 mm versus 0.52 +/- 0.60 mm) than the nonsmokers (P<0.05). Histomorphometry of the donor tissue revealed a blood vessel density of 49.01 +/- 11.91 vessels/200x field for non-smokers and 36.53 +/- 10.23 vessels/200x field for smokers (P<0.05). Conclusion: Root coverage with subepithelial connective tissue graft was negatively affected by smoking, which limited and jeopardized treatment results.
Resumo:
Aim: The aim of this randomized, controlled, clinical study was to compare two surgical techniques with the acellular dermal matrix graft (ADMG) to evaluate which technique could provide better root coverage. Material and Methods: Fifteen patients with bilateral Miller Class I gingival recession areas were selected. In each patient, one recession area was randomly assigned to the control group, while the contra-lateral recession area was assigned to the test group. The ADMG was used in both groups. The control group was treated with a broader flap and vertical-releasing incisions, and the test group was treated with the proposed surgical technique, without releasing incisions. The clinical parameters evaluated before the surgeries and after 12 months were: gingival recession height, probing depth, relative clinical attachment level and the width and thickness of keratinized tissue. Results: There were no statistically significant differences between the groups for all parameters at baseline. After 12 months, there was a statistically significant reduction in recession height in both groups, and there was no statistically significant difference between the techniques with regard to root coverage. Conclusions: Both surgical techniques provided significant reduction in gingival recession height after 12 months, and similar results in relation to root coverage.
Resumo:
Background: Tissue engineering principles could improve the incorporation of acellular dermal matrix (ADM). The aim of this study is to verify if ADM is a suitable three-dimensional matrix for gingival fibroblasts and cancerous cells ingrowth, and also if cultured medium conditioned in ADM affect cellular behavior. Methods: Canine gingival fibroblasts (CGF), human gingival fibroblasts (HGF), and murine melanoma cell line (B16F10) were seeded on ADM for up to 14 days. The following parameters were assessed: morphology and distribution of CGF, HGF, and B16F10; CGF and HGF viability; and the effect of ADM conditioned medium (CM) on CGF viability. Results: Epifluorescence revealed that CGF were unevenly distributed on the ADM surface, showing no increase in cell number over the periods of study; HGF formed a monolayer on the ADM surface in a higher number at 14 days (P<0.05); B16F10 exhibited an increase in cell number within 7 days (P<0.05), and were mainly arranged in cell aggregates on the ADM, forming a continuous layer at 14 days. A higher percentage of cells on the ADM surface (P<0.05) compared to inside was observed for all cell types. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MU) values indicated higher cell viability in samples cultured with HGF compared to CGF (P=0.024). A significantly lower cell viability for CGF grown in CM compared to cells grown in non-CM was observed at 48 and 72 hours (P<0.05). Conclusions: ADM is not suitable as a three-dimensional matrix for gingival fibroblasts ingrowth. Gingival fibroblasts and highly proliferative cells as B16F10 can only be superficially located on ADM, and CGF are negatively affected by culture medium conditioned in ADM, reducing its viability. J Periodontol 2011;82:293-301.
Resumo:
OBJETIVO: Comparar a reinervação muscular com enxerto de nervo em um e dois tempos operatórios, utilizando a neurorrafia término-lateral (NTL) sem lesão do nervo doador. MÉTODOS: Vinte ratos foram distribuídos em quatro grupos. O grupo 1 (G1), um estágio, recebeu o enxerto que foi suturado ao nervo tibial (NT), por meio de NTL, e seu coto livre foi suturado por NTL ao coto distal do nervo peroneal (NP), seccionado a um centímetro do NT, na mesma cirurgia. O grupo 2 (G2), dois estágios, recebeu o enxerto de nervo na primeira cirurgia, como já descrito. Dois meses depois, na segunda cirurgia, o NP foi seccionado e seu coto distal ligado ao coto distal do enxerto como em G1. O grupo controle de normalidade (Gn) recebeu o enxerto da mesma forma, apenas. E o grupo controle de denervação (Gd), além de receber o enxerto, teve o NP seccionado e seus cotos sepultados na musculatura adjacente, com a finalidade de denervar o músculo tibial cranial (MTC), alvo deste estudo. Os parâmetros utilizados para avaliar a reinervação do MTC foram massa muscular, diâmetro mínimo da fibra muscular e área. RESULTADOS: O grupo G2 apresentou superioridade (p<0,0001) em relação ao G1 na massa do MTC, no diâmetro mínimo e na área das fibras musculares. Na comparação entre os quatro grupos, estes mesmos parâmetros tiveram sua expressão máxima em Gn e mínima em Gd, como era esperado. CONCLUSÃO: A reinervação muscular em dois estágios apresenta melhor resultado quando comparada à técnica em um tempo.
Resumo:
This article describes an alternative surgical approach to the harvesting of subepithelial connective tissue grafts from thin palates. A partial-thickness flap is raised, and a graft composed of epithelium and connective tissue is removed from the palate. The superficial layer ( epithelium and a thin zone of connective tissue) is then dissected from the graft and replaced at the donor site to facilitate faster healing. The subjacent layer of connective tissue is placed as needed to obtain root coverage. The clinical application of this technique is described in two patients with multiple gingival recessions.
Resumo:
The purpose of this article is to report the use of the subepithelial connective tissue graft technique combined with the coronally positioned flap on a composite resin-restored root surface to treat Miller Class I gingival recessions associated with deep cervical abrasions in maxillary central incisors. Clinical measurements, including gingival recession height, probing depth, and bleeding on probing (BoP), were recorded during the preoperative clinical examination and at 2, 6, 12, and 24 months postoperatively. During the follow-up periods, no periodontal pockets or BoP were observed. The periodontal tissue of the teeth presented normal color, texture, and contouring. In addition, it was observed that creeping attachment had occurred on the restoration. This case report shows that this form of treatment can be highly effective and predictable in resolving gingival recession associated with a deep cervical abrasion. (Quintessence Int 2012;43:597-602)
Resumo:
Background: This article reports a clinical case with a 3-year follow-up in which a subepithelial connective tissue graft (SCTG) was used with the tunnel technique to treat multiple gingival recessions, and describes a technique used to enlarge the extension of the graft.Methods: A 41 -year-old female patient was referred for evaluation and treatment of maxillary multiple recessions. Following basic therapy, the plaque index was 23%, and the gingival index was 12%. Thus, SCTG with the tunnel technique was proposed to provide root coverage of Miller Class I recession on teeth #8 through #11 and a Miller Class III recession on tooth #12. After the donor area had been prepared, SCTG was removed and split cross-sectionally to lengthen it. The graft was placed through the tunnel and sutured.Results: Two weeks after the surgical procedure, the tissue color was nearly homogeneous with some reddish regions where the connective tissue was left uncovered, and there were no signs of incisions or suture marks. After 3 years of follow-up, the mean coverage of the recessions was 2.2 +/- 0.7 mm (74.2%), which corresponded to the gain of keratinized tissue. In addition, a gain in tissue thickness was observed.Conclusion: In a long-term evaluation, the tunnel technique with the elongated SCTG was used successfully for treatment of multiple gingival recessions with an increase of the soft tissue volume and gain of keratinized tissue.
Resumo:
This article reports the case of a 12-year-old patient with tooth extrusion, pain, gingival bleeding, and localized periodontitis near the maxillary second premolar. Despite probing and radiographic examination, it was not possible to establish the etiology. Tooth extraction was indicated because of the severe tooth mobility and extrusion. Curettage of the tooth socket revealed a rubber separator. Preventive approaches are suggested to avoid iatrogenesis and legal problems. (Am J Orthod Dentofacial Orthop 2012; 142:402-5)
Resumo:
Cyclosporin A is a selective immunosuppressant, used in organ transplants to prevent graft rejection. Cyclosporin A can cause various side effects including gingival overgrowth. The aim of this work was to evaluate gingival overgrowth of rats treated daily with 10 mg/kg body weight of Cyclosporin A for 60 days, as well as the regression after the interruption of treatment. All rats treated with Cyclosporin A developed gingival overgrowth, with increased thickness of the epithelium, height and width of the connective tissue. The density of fibroblasts and collagen fibers also increased. Five to 90 days after the interruption of treatment with Cyclosporin A, there was a progressive reduction of the gingival volume and of collagen fibers and fibroblast densities. The reduction was more pronounced in the initial periods and after 90 days did not return to the normal values.