961 resultados para Fredholm Integral Equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract No. AF33(616)-6079 Project No. 9-(13-6278) Task 40572. Sponsored by: Wright Air Development Center"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the problem of determining the stationary temperature field on an inclusion from given Cauchy data on an accessible exterior boundary. On this accessible part the temperature (or the heat flux) is known, and, additionally, on a portion of this exterior boundary the heat flux (or temperature) is also given. We propose a direct boundary integral approach in combination with Tikhonov regularization for the stable determination of the temperature and flux on the inclusion. To determine these quantities on the inclusion, boundary integral equations are derived using Green’s functions, and properties of these equations are shown in an L2-setting. An effective way of discretizing these boundary integral equations based on the Nystr¨om method and trigonometric approximations, is outlined. Numerical examples are included, both with exact and noisy data, showing that accurate approximations can be obtained with small computational effort, and the accuracy is increasing with the length of the portion of the boundary where the additionally data is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel numerical method for a mixed initial boundary value problem for the unsteady Stokes system in a planar doubly-connected domain. Using a Laguerre transformation the unsteady problem is reduced to a system of boundary value problems for the Stokes resolvent equations. Employing a modied potential approach we obtain a system of boundary integral equations with various singularities and we use a trigonometric quadrature method for their numerical solution. Numerical examples are presented showing that accurate approximations can be obtained with low computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regions containing internal boundaries such as composite materials arise in many applications.We consider a situation of a layered domain in IR3 containing a nite number of bounded cavities. The model is stationary heat transfer given by the Laplace equation with piecewise constant conductivity. The heat ux (a Neumann condition) is imposed on the bottom of the layered region and various boundary conditions are imposed on the cavities. The usual transmission (interface) conditions are satised at the interface layer, that is continuity of the solution and its normal derivative. To eciently calculate the stationary temperature eld in the semi-innite region, we employ a Green's matrix technique and reduce the problem to boundary integral equations (weakly singular) over the bounded surfaces of the cavities. For the numerical solution of these integral equations, we use Wienert's approach [20]. Assuming that each cavity is homeomorphic with the unit sphere, a fully discrete projection method with super-algebraic convergence order is proposed. A proof of an error estimate for the approximation is given as well. Numerical examples are presented that further highlights the eciency and accuracy of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Cauchy problem for the heat equation, where the temperature field is to be reconstructed from the temperature and heat flux given on a part of the boundary of the solution domain. We employ a Landweber type method proposed in [2], where a sequence of mixed well-posed problems are solved at each iteration step to obtain a stable approximation to the original Cauchy problem. We develop an efficient boundary integral equation method for the numerical solution of these mixed problems, based on the method of Rothe. Numerical examples are presented both with exact and noisy data, showing the efficiency and stability of the proposed procedure and approximations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem considered is that of determining the shape of a planar acoustically sound-soft obstacle from knowledge of the far-field pattern for one time-harmonic incident field. Two methods, which are based on the solution of a pair of integral equations representing the incoming wave and the far-field pattern, respectively, are proposed and investigated for finding the unknown boundary. Numerical resultsare included which show that the methods give accurate numerical approximations in relatively few iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 45G10, 45M99, 47H09

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 45DB05, 45E05, 78A45.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A formulation in terms of a Fredholm integral equation of the first kind is given for the axisymmetric problem of a disk oscillating harmonically in a viscous fluid whose surface is contaminated with a surfactant film. The equation of the first kind is converted to a pair of coupled integral equations of the second kind, which are solved numerically. The resistive torque on the disk is evaluated and surface velocity profiles are computed for varying values of the ratio of the coefficient of surface shear viscosity to the coefficient of viscosity of the substrate fluid, and the depth of the disk below the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title-problem has been reduced to that of solving a Fredholm integral equation of the second kind. One end of the cylinder is assumed to be fixed, while the cylinder is deformed by an axial current. The vertical displacement on the upper flat end of the cylinder has been determined from an iterative solution of the Fredholm equation valid for large values of the length. The radial displacement of the curved boundary has also been determined at the middle of the cylinder, by using the iterative solution.