968 resultados para Fracture mechanics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assumption that negligible work is involved in the formation of new surfaces in the machining of ductile metals, is re-examined in the light of both current Finite Element Method (FEM) simulations of cutting and modern ductile fracture mechanics. The work associated with separation criteria in FEM models is shown to be in the kJ/m2 range rather than the few J/m2 of the surface energy (surface tension) employed by Shaw in his pioneering study of 1954 following which consideration of surface work has been omitted from analyses of metal cutting. The much greater values of surface specific work are not surprising in terms of ductile fracture mechanics where kJ/m2 values of fracture toughness are typical of the ductile metals involved in machining studies. This paper shows that when even the simple Ernst–Merchant analysis is generalised to include significant surface work, many of the experimental observations for which traditional ‘plasticity and friction only’ analyses seem to have no quantitative explanation, are now given meaning. In particular, the primary shear plane angle φ becomes material-dependent. The experimental increase of φ up to a saturated level, as the uncut chip thickness is increased, is predicted. The positive intercepts found in plots of cutting force vs. depth of cut, and in plots of force resolved along the primary shear plane vs. area of shear plane, are shown to be measures of the specific surface work. It is demonstrated that neglect of these intercepts in cutting analyses is the reason why anomalously high values of shear yield stress are derived at those very small uncut chip thicknesses at which the so-called size effect becomes evident. The material toughness/strength ratio, combined with the depth of cut to form a non-dimensional parameter, is shown to control ductile cutting mechanics. The toughness/strength ratio of a given material will change with rate, temperature, and thermomechanical treatment and the influence of such changes, together with changes in depth of cut, on the character of machining is discussed. Strength or hardness alone is insufficient to describe machining. The failure of the Ernst–Merchant theory seems less to do with problems of uniqueness and the validity of minimum work, and more to do with the problem not being properly posed. The new analysis compares favourably and consistently with the wide body of experimental results available in the literature. Why considerable progress in the understanding of metal cutting has been achieved without reference to significant surface work is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fracture mechanics plays an important role in the material science, structure design and industrial production due to the failure of materials and structures are paid high attention in human activities. This dissertation, concentrates on some of the fractural aspects of shaft and composite which have being increasingly used in modern structures, consists four chapters within two parts. Chapters 1 to 4 are included in part 1. In the first chapter, the basic knowledge about the stress and displacement fields in the vicinity of a crack tip is introduced. A review involves the general methods of calculating stress intensity factors are presented. In Chapter 2, two simple engineering methods for a fast and close approximation of stress intensity factors of cracked or notched beams under tension, bending moment, shear force, as well as torque are presented. New formulae for calculating the stress intensity factors are proposed. One of the methods named Section Method is improved and applied to the three dimensional analysis of cracked circular section for calculating stress intensity factors. The comparisons between the present results and the solutions calculated by ABAQUS for single mode and mixed mode are studied. In chapter 3, fracture criteria for a crack subjected to mixed mode loading of two-dimension and three-dimension are reviewed. The crack extension angle for single mode and mixed mode, and the critical loading domain obtained by SEDF and MTS are compared. The effects of the crack depth and the applied force ratio on the crack propagation angle and the critical loading are investigated. Three different methods calculating the crack initiation angle for three-dimension analysis of various crack depth and crack position are compared. It should be noted that the stress intensity factors used in the criteria are calculated in section 2.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a repairability index for damage assessment in reinforced concrete structural members. The procedure discussed in this paper differs from the standard methods in two aspects: the structural and damage analyses are coupled and it is based on the concepts of fracture and continuum damage mechanics. The relationship between the repairability index and the well-known Park and Ang index is shown in some particular cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical techniques have been finding increasing use in all aspects of fracture mechanics, and often provide the only means for analyzing fracture problems. The work presented here, is concerned with the application of the finite element method to cracked structures. The present work was directed towards the establishment of a comprehensive two-dimensional finite element, linear elastic, fracture analysis package. Significant progress has been made to this end, and features which can now be studied include multi-crack tip mixed-mode problems, involving partial crack closure. The crack tip core element was refined and special local crack tip elements were employed to reduce the element density in the neighbourhood of the core region. The work builds upon experience gained by previous research workers and, as part of the general development, the program was modified to incorporate the eight-node isoparametric quadrilateral element. Also. a more flexible solving routine was developed, and provided a very compact method of solving large sets of simultaneous equations, stored in a segmented form. To complement the finite element analysis programs, an automatic mesh generation program has been developed, which enables complex problems. involving fine element detail, to be investigated with a minimum of input data. The scheme has proven to be versati Ie and reasonably easy to implement. Numerous examples are given to demonstrate the accuracy and flexibility of the finite element technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical 22 and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ductile-brittle fracture transition was investigated using compact tension (CT) specimens from -70oC to 40oC for a carbon steel. Large deformation finite element analysis has been carried out to simulate the stable crack growth in the compact tension (CT, a/W=0.6), three point-point bend (SE(B), a/W=0.1) and centre-cracked tension (M(T), a/W=0.5) specimens. Experimental crack tip opening displacement (CTOD) resistance curve was employed as the crack growth criterion. Ductile tearing is sensitive to constraint and tearing modulus increases with reduced constraint level. The finite element analysis shows that path-dependence of J-integral occurs from the very beginning of crack growth and ductile crack growth elevates the opening stress on the remaining ligament. Cleavage may occur after some ductile crack growth due to the increase of opening stress. For both stationary and growing cracks, the magnitude of opening stress increases with increasing in-plane constraint. The ductile-brittle transition takes place when the opening stress ahead of the crack tip reaches the local cleavage stress as the in-plane constraint of the specimen increases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The AISI 4340 steel has been electroslag refined and the improvement in mechanical properties has been assessed. Electroslag refining (ESR) has improved tensile ductility, plane strain fracture toughness, Charpy fracture energy, and has decreased fatigue crack growth rates. The KIC values for the ESR steel are nearly twice those estimated in the unrefined steel and higher than those obtained in the vacuum arc remelted steel. Fatigue crack growth rates in region I and in region III are found to be decreased considerably in the ESR steel, while they are unaffected in region II. Measurements on heat treated samples have shown that the ESR steel has a better response to heat treatment. Both the suggested heat treatments namely austenitizing at 1140–1470 K as well as the conventional heat treatment of austenitizing at 1140 K have been followed. The improvement in the mechanical properties of ESR steel has been explained on the basis of removal of nonmetallic inclusions and reduction in sulfur content in the steel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective is to present the formulation of numerically integrated modified virtual crack closure integral technique for concentrically and eccentrically stiffened panels for computation of strain-energy release rate and stress intensity factor based on linear elastic fracture mechanics principles. Fracture analysis of cracked stiffened panels under combined tensile, bending, and shear loads has been conducted by employing the stiffened plate/shell finite element model, MQL9S2. This model can be used to analyze plates with arbitrarily located concentric/eccentric stiffeners, without increasing the total number of degrees of freedom, of the plate element. Parametric studies on fracture analysis of stiffened plates under combined tensile and moment loads have been conducted. Based on the results of parametric,studies, polynomial curve fitting has been carried out to get best-fit equations corresponding to each of the stiffener positions. These equations can be used for computation of stress intensity factor for cracked stiffened plates subjected to tensile and moment loads for a given plate size, stiffener configuration, and stiffener position without conducting finite element analysis.