143 resultados para Foxes.
Resumo:
Blame avoidance behavior (BAB) encompasses all kinds of integrity-protecting activities by officeholders in the face of potentially blame-attracting events. Although considered essential for a realistic understanding of politics and policymaking, a general understanding of this multi-faceted behavioral phenomenon and its implications has been lacking to date. We argue that this is due to the lack of careful conceptualization of various forms of BAB. Crucially, the difference between anticipatory and reactive forms of BAB is largely neglected in the literature. This paper links anticipatory and reactive forms of BAB as two consecutive decision situations. It exposes dependence relationships between the situations that trigger BAB, the rationalities at work, the resources and strategies applied by blame-avoiding actors, and the various consequences thereof. The paper concludes that anticipatory and reactive BAB are distinct phenomena that require specific research approaches to assess their relevance for the workings of polities.
Resumo:
Inter-individual variation in diet within generalist animal populations is thought to be a widespread phenomenon but its potential causes are poorly known. Inter-individual variation can be amplified by the availability and use of allochthonous resources, i.e., resources coming from spatially distinct ecosystems. Using a wild population of arctic fox as a study model, we tested hypotheses that could explain variation in both population and individual isotopic niches, used here as proxy for the trophic niche. The arctic fox is an opportunistic forager, dwelling in terrestrial and marine environments characterized by strong spatial (arctic-nesting birds) and temporal (cyclic lemmings) fluctuations in resource abundance. First, we tested the hypothesis that generalist foraging habits, in association with temporal variation in prey accessibility, should induce temporal changes in isotopic niche width and diet. Second, we investigated whether within-population variation in the isotopic niche could be explained by individual characteristics (sex and breeding status) and environmental factors (spatiotemporal variation in prey availability). We addressed these questions using isotopic analysis and Bayesian mixing models in conjunction with linear mixed-effects models. We found that: i) arctic fox populations can simultaneously undergo short-term (i.e., within a few months) reduction in both isotopic niche width and inter-individual variability in isotopic ratios, ii) individual isotopic ratios were higher and more representative of a marine-based diet for non-breeding than breeding foxes early in spring, and iii) lemming population cycles did not appear to directly influence the diet of individual foxes after taking their breeding status into account. However, lemming abundance was correlated to proportion of breeding foxes, and could thus indirectly affect the diet at the population scale.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Demonstrating the existence of trends in monitoring data is of increasing practical importance to conservation managers wishing to preserve threatened species or reduce the impact of pest species. However, the ability to do so can be compromised if the species in question has low detectability and the true occupancy level or abundance of the species is thus obscured. Zero-inflated models that explicitly model detectability improve the ability to make sound ecological inference in such situations. In this paper we apply an occupancy model including detectability to data from the initial stages of a fox-monitoring program on the Eyre Peninsula, South Australia. We find that detectability is extremely low (< 18%) and varies according to season and the presence or absence of roadside vegetation. We show that simple methods of using monitoring data to inform management, such as plotting the raw data or performing logistic regression, fail to accurately diagnose either the status of the fox population or its trajectory over time. We use the results of the detectability model to consider how future monitoring could be redesigned to achieve efficiency gains. A wide range of monitoring programs could benefit from similar analyses, as part of an active adaptive approach to improving monitoring and management.
Resumo:
Wildlife populations are affected by a series of emerging diseases, some of which pose a significant threat to their conservation. They can also be reservoirs of pathogens that threaten domestic animal and human health. In this paper, we review the ecology of two viruses that have caused significant disease in domestic animals and humans and are carried by wild fruit bats in Asia and Australia. The first, Hendra virus, has caused disease in horses and/or humans in Australia every five years since it first emerged in 1994. Nipah virus has caused a major outbreak of disease in pigs and humans in Malaysia in the late 1990s and has also caused human mortalities in Bangladesh annually since 2001. Increased knowledge of fruit bat population dynamics and disease ecology will help improve our understanding of processes driving the emergence of diseases from bats. For this, a transdisciplinary approach is required to develop appropriate host management strategies that both maximise the conservation of bat populations as well as minimise the risk of disease outbreaks in domestic animals and humans. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Indigenous rights under the government of Stephen Harper.
Resumo:
Flying foxes have been the focus of research into three newly described viruses from the order Mononegavirales, namely Hendra virus (HeV), Menangle virus and Australian Bat Lyssavirus (ABL). Early investigations indicate that flying foxes are the reservoir host for these viruses. In 1994, two outbreaks of a new zoonotic disease affecting horses and humans occurred in Queensland. The virus which was found to be responsible was called equine morbillivirus (EMV) and has since been renamed HeV. Investigation into the reservoir of HeV has produced evidence that antibodies capable of neutralising HeV have only been detected in flying foxes. Over 20% of flying foxes in eastern Australia have been identified as being seropositive. Additionally six species of flying foxes in Papua New Guinea have tested positive for antibodies to HeV. In 1996 a virus from the family Paramyxoviridae was isolated from the uterine fluid of a female flying fox. Sequencing of 10 000 of the 18 000 base pairs (bp) has shown that the sequence is identical to the HeV sequence. As part of investigations into HeV, a virus was isolated from a juvenile flying fox which presented with neurological signs in 1996. This virus was characterised as belonging to the family Rhabdoviridae, and was named ABL. Since then four flying fox species and one insectivorous species have tested positive for ABL. The third virus to be detected in flying foxes is Menangle virus, belonging to the family Paramyxoviridae. This virus was responsible for a zoonotic disease affecting pigs and humans in New South Wales in 1997. Antibodies capable of neutralising Menangle virus, were detected in flying foxes. (C) 1999 Elsevier Science B.V. All rights reserved.