985 resultados para Four-helix bundle
Resumo:
In Halobacterium salinarum phototaxis is mediated by the visual pigment-like photoreceptors sensory rhodopsin I (SRI) and II (SRII). SRI is a receptor for attractant orange and repellent UV-blue light, and SRII is a receptor for repellent blue-green light, and transmit signals through the membrane-bound transducer proteins HtrI and HtrII, respectively. ^ The primary sequences of HtrI and HtrII predict 2 transmembrane helices (TM1 and TM2) followed by a hydrophilic cytoplasmic domain. HtrII shows an additional large periplasmic domain for chemotactic ligand binding. The cytoplasmic regions are homologous to the adaptation and signaling domains of eubacterial chemotaxis receptors and, like their eubacterial homologs, modulate the transfer of phosphate groups from the histidine protein kinase CheA to the response regulator CheY that in turn controls flagellar motor rotation and the cell's swimming behavior. HtrII and Htrl are dimeric proteins which were predicted to contain carboxylmethylation sites in a 4-helix bundle in their cytoplasmic regions, like eubacterial chemotaxis receptors. ^ The phototaxis transducers of H. salinarum have provided a model for studying receptor/tranducer interaction, adaptation in sensory systems, and the role of membrane molecular complexes in signal transduction. ^ Interaction between the transducer HtrI and the photoreceptor SRI was explored by creating six deletion constructs of HtrI, with progressively shorter cytoplasmic domains. This study confirmed a putative chaperone-like function of HtrI, facilitating membrane insertion or stability of the SRI protein, a phenomenon previously observed in the laboratory, and identified the smallest HtrI fragment containing interaction sites for both the chaperone-like function and SRI photocycle control. The active fragment consisted of the N-terminal 147 residues of the 536-residue HtrI protein, a portion of the molecule predicted to contain the two transmembrane helices and the first ∼20% of the cytoplasmic portion of the protein. ^ Phototaxis and chemotaxis sensory systems adapt to stimuli, thereby signaling only in response to changes in environmental conditions. Observations made in our and in other laboratories and homologies between the halobacterial transducers with the chemoreceptors of enteric bacteria anticipated a role for methylation in adaptation to chemo- and photostimuli. By site directed mutagenesis we identified the methylation sites to be the glutamate pairs E265–E266 in HtrI and E513–E514 in HtrII. Cells containing the unmethylatable transducers are still able to perform phototaxis and adapt to light stimuli. By pulse-chase analysis we found that methanol production from carboxylmethyl group hydrolysis occurs upon specific photo stimulation of unmethylatable HtrI and HtrII and is due to turnover of methyl groups on other transducers. We demonstrated that the turnover in wild-type H. salinarum cells that follows a positive stimulus is CheY-dependent. The CheY-feedback pathway does not require the stimulated transducer to be methylatable and operates globally on other transducers present in the cell. ^ Assembly of signaling molecules into architecturally defined complexes is considered essential in transmission of the signals. The spectroscopic characteristics of SRI were exploited to study the stoichiometric composition in the phototaxis complex SRI-HtrI. A molar ratio of 2.1 HtrI: 1 SRI was obtained, suggesting that only 1 SRI binding site is occupied on the HtrI homodimer. We used gold-immunoelectron microscopy and light fluorescence microscopy to investigate the structural organization and the distribution of other halobacterial transducers. We detected clusters of transducers, usually near the cell's poles, providing a ultrastructural basis for the global effects and intertransducer communication we observe. ^
Resumo:
The Pointed (PNT) domain and an adjacent mitogen-activated protein (MAP) kinase phosphorylation site are defined by sequence conservation among a subset of ets transcription factors and are implicated in two regulatory strategies, protein interactions and posttranslational modifications, respectively. By using NMR, we have determined the structure of a 110-residue fragment of murine Ets-1 that includes the PNT domain and MAP kinase site. The Ets-1 PNT domain forms a monomeric five-helix bundle. The architecture is distinct from that of any known DNA- or protein-binding module, including the helix-loop-helix fold proposed for the PNT domain of the ets protein TEL. The MAP kinase site is in a highly flexible region of both the unphosphorylated and phosphorylated forms of the Ets-1 fragment. Phosphorylation alters neither the structure nor monomeric state of the PNT domain. These results suggest that the Ets-1 PNT domain functions in heterotypic protein interactions and support the possibility that target recognition is coupled to structuring of the MAP kinase site.
Resumo:
The Glu-134–Arg-135 residues in rhodopsin, located near the cytoplasmic end of the C helix, are involved in G protein binding, or activation, or both. Furthermore, the charge-neutralizing mutation Glu-134 to Gln-134 produces hyperactivity in the activated state and produces constitutive activity in opsin. The Glu/Asp-Arg charge pair is highly conserved in equivalent positions in other G protein-coupled receptors. To investigate the structural consequences of charge-neutralizing mutations at Glu-134 and Arg-135 in rhodopsin, single spin-labeled side chains were introduced at sites in the cytoplasmic domains of helices C (140), E (227), F (250), or G (316) to serve as “molecular sensors” of the local helix bundle conformation. In each of the spin-labeled rhodopsins, a Gln substitution was introduced at either Glu-134 or Arg-135, and the electron paramagnetic resonance spectrum of the spin label was used to monitor the structural response of the helix bundle. The results indicate that a Gln substitution at Glu-134 induces a photoactivated conformation around helices C and G even in the dark state, an observation of potential relevance to the hyperactivity and constitutive activity of the mutant. In contrast, little change is induced in helix F, which has been shown to undergo a dominant motion upon photoactivation. This result implies that the multiple helix motions accompanying photoactivation are not strongly coupled and can be induced to take place independently. Gln substitution at Arg-135 produces only minor structural changes in the dark- or light-activated conformation, suggesting that this residue is not a determinant of structure in the regions investigated, although it may be functionally important.
Resumo:
A 16-amino acid residue peptide derived from a consensus motif of natural ferredoxins incorporates a tetranuclear iron sulfur cluster under physiological conditions. Successful assembly of the [4Fe–4S]2+/1+ cluster within a monomeric peptide was demonstrated using size exclusion chromatography, UV-visible, visible CD, and cryogenic EPR spectroscopies. The robustness of [4Fe–4S]2+/1+ formation was tested using peptides with either the ligating cysteine exchanged for alanine or with the intervening amino acids replaced by glycine. The small size of the peptide allows for modular incorporation into more complex protein structures. In one larger structure, we describe a tetra-α-helix bundle that self-assembles both iron–sulfur clusters and hemes, thereby demonstrating feasibility for the general synthesis of maquettes containing multiple, juxtaposed redox cofactors. This is a motif common to the catalytic sites of native oxidoreductases.
Resumo:
We present multiple native and denaturation simulations of the B and E domains of the three-helix bundle protein A, totaling 60 ns. The C-terminal helix (H3) consistently denatures later than either of the other two helices and contains residual helical structure in the denatured state. These results are consistent with experiments suggesting that the isolated H3 fragment is more stable than H1 and H2 and that H3 forms early in folding. Interestingly, the denatured state of the B domain is much more compact than that of the E domain. This sequence-dependent effect on the dimensions of the denatured state and the lack of correlation with structure suggest that the radius of gyration can be a misleading reaction coordinate for unfolding/folding. Various unfolding and refolding events are observed in the denaturation simulations. In some cases, the transitions are facilitated through interactions with other portions of the protein—contact-assisted helix formation. In the native simulations, the E domain is very stable: after 6 ns, the Cα root-mean-square deviation from the starting structure is less than 1.4 Å. In contrast, the native state of the B domain deviates more and its inter-helical angles fluctuate. In apparent contrast, we note that the B domain is thermodynamically more stable than the E domain. The simulations suggest that the increased stability of the B domain may be due to heightened mobility, and therefore entropy, in the native state and decreased mobility/entropy in the more compact denatured state.
Resumo:
Transmembrane signaling by bacterial chemoreceptors is thought to involve relative movement among the four transmembrane helices of the homodimer. We assayed that movement by measuring effects of ligand occupancy on rates of oxidative cross-linking between cysteines introduced into neighboring helices of the transmembrane domain of chemoreceptor Trg from Escherichia coli. Measurements were done on chemoreceptors in their native environment, intact cells that were motile and chemotactically responsive. Receptor occupancy did not appear to cause drastic rearrangement of the four-helix structure since, among 67 cysteine pairs tested, the same 19 exhibited oxidative cross-linking in the presence or absence of saturating chemoattractant. However, occupancy did cause subtle changes that were detected as effects on rates of cross-linking. Among the seven disulfides appropriate for measurements of initial rates of formation, ligand occupancy had significant and different effects on all three cross-links that connected the two helices within a subunit but had minimal effects on the four that spanned the packing interface between subunits. This constitutes direct evidence that the conformational change of transmembrane signaling involves significant movement within a subunit and minimal movement between subunits, a pattern deduced from several previous studies and now documented directly. Among possible modes of movement between the two helices of a subunit, axial sliding of one helix relative to the other was the conformational change that best accounted for the observed effects on cross-linking.
Resumo:
Transcription elongation by RNA polymerase II is regulated by the general elongation factor TFIIS. This factor stimulates RNA polymerase II to transcribe through regions of DNA that promote the formation of stalled ternary complexes. Limited proteolytic digestion showed that yeast TFIIS is composed of three structural domains, termed I, II, and III. The two C-terminal domains (II and III) are required for transcription activity. The structure of domain III has been solved previously by using NMR spectroscopy. Here, we report the NMR-derived structure of domain II: a three-helix bundle built around a hydrophobic core composed largely of three tyrosines protruding from one face of the C-terminal helix. The arrangement of known inactivating mutations of TFIIS suggests that two surfaces of domain II are critical for transcription activity.
Resumo:
We present a systematic approach to minimizing the Z-domain of protein A, a three-helix bundle (59 residues total) that binds tightly (Kd = 10 nM) to the Fc portion of an immunoglobin IgG1. Despite the fact that all the contacts seen in the x-ray structure of the complex with the IgG are derived from residues in the first two helices, when helix 3 is deleted, binding affinity is reduced > 10(5)-fold (Kd > 1 mM). By using structure-based design and phage display methods, we have iteratively improved the stability and binding affinity for a two-helix derivative, 33 residues in length, such that it binds IgG1, with a Kd of 43 nM. This was accomplished by stepwise selection of random mutations from three regions of the truncated Z-peptide: the 4 hydrophobic residues from helix 1 and helix 2 that contacted helix 3 (the exoface), followed by 5 residues between helix 1 and helix 2 (the intraface), and lastly by 19 residues at or near the interface that interacts with Fc (the interface). As selected mutations from each region were compiled (12 in total), they led to progressive increases in affinity for IgG, and concomitant increases in alpha-helical content reflecting increased stabilization of the two-helix scaffold. Thus, by sequential increases in the stability of the structure and improvements in the quality of the intermolecular contacts, one can reduce larger binding domains to smaller ones. Such mini-protein binding domains are more amenable to synthetic chemistry and thus may be useful starting points for the design of smaller organic mimics. Smaller binding motifs also provide simplified and more tractable models for understanding determinants of protein function and stability.
Resumo:
The chloroperoxidase (EC 1.11.1.-) from the fungus Curvularia inaequalis belongs to a class of vanadium enzymes that oxidize halides in the presence of hydrogen peroxide to the corresponding hypohalous acids. The 2.1 A crystal structure (R = 20%) of an azide chloroperoxidase complex reveals the geometry of the catalytic vanadium center. Azide coordinates directly to the metal center, resulting in a structure with azide, three nonprotein oxygens, and a histidine as ligands. In the native state vanadium will be bound as hydrogen vanadate(V) in a trigonal bipyramidal coordination with the metal coordinated to three oxygens in the equatorial plane, to the OH group at one apical position, and to the epsilon 2 nitrogen of a histidine at the other apical position. The protein fold is mainly alpha-helical with two four-helix bundles as main structural motifs and an overall structure different from other structures. The helices pack together to a compact molecule, which explains the high stability of the protein. An amino acid sequence comparison with vanadium-containing bromoperoxidase from the seaweed Ascophyllum nodosum shows high similarities in the regions of the metal binding site, with all hydrogen vanadate(V) interacting residues conserved except for lysine-353, which is an asparagine.
Resumo:
Cassette mutagenesis was used to identify side chains in human interleukin 5 (hIL-5) that mediate binding to hIL-5 receptor alpha chain (hIL-5R alpha). A series of single alanine substitutions was introduced into a stretch of residues in the C-terminal region, including helix D, which previously had been implicated in receptor alpha chain recognition and which is aligned on the IL-5 surface so as to allow the topography of receptor binding residues to be examined. hIL-5 and single site mutants were expressed in COS cells, their interactions with hIL-5R alpha were measured by a sandwich surface plasmon resonance biosensor method, and their biological activities were measured by an IL-5-dependent cell proliferation assay. A pattern of mutagenesis effects was observed, with greatest impact near the interface between the two four-helix bundles of IL-5, in particular at residues Glu-110 and Trp-111, and least at the distal ends of the D helices. This pattern suggests the possibility that residues near the interface of the two four-helix bundles in hIL-5 comprise a central patch or hot spot, which constitutes an energetically important alpha chain recognition site. This hypothesis suggests a structural explanation for the 1:1 stoichiometry observed for the complex of hIL-5 with hIL-5R alpha.
Resumo:
The active site of the allosteric chorismate mutase (chorismate pyruvatemutase, EC 5.4.99.5) from yeast Saccharomyces cerevisiae (YCM) was located by comparison with the mutase domain (ECM) of chorismate mutase/prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] (the P protein) from Escherichia coli. Active site domains of these two enzymes show very similar four-helix bundles, each of 94 residues which superimpose with a rms deviation of 1.06 A. Of the seven active site residues, four are conserved: the two arginines, which bind to the inhibitor's two carboxylates; the lysine, which binds to the ether oxygen; and the glutamate, which binds to the inhibitor's hydroxyl group in ECM and presumably in YCM. The other three residues in YCM (ECM) are Thr-242 (Ser-84), Asn-194 (Asp-48), and Glu-246 (Gln-88). This Glu-246, modeled close to the ether oxygen of chorismate in YCM, may function as a polarizing or ionizable group, which provides another facet to the catalytic mechanism.
Resumo:
Human ciliary neurotrophic factor (hCNTF), which promotes the cell survival and differentiation of motor and other neurons, is a protein belonging structurally to the alpha-helical cytokine family. hCNTF was subjected to three-dimensional structure modeling and site-directed mutagenesis to analyze its structure-function relationship. The replacement of Lys-155 with any other amino acid residue resulted in abolishment of neural cell survival activity, and some of the Glu-153 mutant proteins had 5- to 10-fold higher biological activity. The D1 cap region (around the boundary between the CD loop and helix D) of hCNTF, including both Glu-153 and Lys-155, was shown to play a key role in the biological activity of hCNTF as one of the putative receptor-recognition sites. In this article, the D1 cap region of the 4-helix-bundle proteins is proposed to be important in receptor recognition and biological activity common to alpha-helical cytokine proteins reactive with gp130, a component protein of the receptors.
Resumo:
Transmembrane signaling by bacterial chemoreceptors is thought to involve conformational changes within a stable homodimer. We investigated the functional consequences of constraining movement between pairs of helices in the four-helix structure of the transmembrane domain of chemoreceptor Trg. Using a family of cysteine-containing receptors, we identified oxidation treatments for intact cells that catalyzed essentially complete sulfhydryl cross-linking at selected positions and yet left flagellar and sensory functions largely unperturbed. Constraining movement by cross-links between subunits had little effect on tactic response, but constraining movement between transmembrane segments of the monomer drastically reduced function. We deduce that transmembrane signaling requires substantial movement between transmembrane helices of a monomer but not between interacting helices across the interface between subunits.
Resumo:
Protein-protein interactions are central to all biological processes. The creation of small molecules that can structurally mimic the fundamental units of protein architecture (helices, strands, turns, and their combinations) could potentially be used to reproduce important bioactive protein surfaces and interfere in biological processes. Although this field is still in relative infancy, substantial progress is being made in creating small molecules that can mimic these individual secondary structural elements of proteins. However the generation of compounds that can reproduce larger protein surfaces, composed of multiple structural elements of proteins, has proven to be much more challenging. This presentation will describe some densely functionalised small molecules that do constrain multiple peptide motifs in defined structures such as loop bundles, helix bundles, strand and sheet bundles. An example of a helix bundle that undergoes conformational changes to a beta sheet bundle and aggregates into multi-micron length peptide nanofibre 'rope' will be described.
Resumo:
The monohydrate of the protected amino-terminal pentapeptide of suzukacillin, t-butoxycarbonyl--aminoisobutyryl-L-prolyl-L-valyl--aminoisobutyryl-L-valine methyl ester, C29H51N5O8, crystallizes in the orthorhombic space group P212121 with a= 10.192, b= 10.440, c= 32.959 Å, and Z= 4. The structure has been solved by direct methods and refined to an R value of 0.101 for 1 827 observed reflections. The molecule exists as a four-fold helix with a pitch of 5.58 Å. The helix is stabilised by N–H O hydrogen bonds, two of the 51 type (corresponding to the -helix) and the third of the 41 type (310 helix). The carbonyl oxygen of the amino-protecting group accepts two hydrogen bonds, one each from the amide NH groups of the third (41) and fourth (51) residues. The remaining 51 hydrogen bond is between the two terminal residues. The lone water molecule in the structure is hydrogen bonded to carbonyl oxygens of the prolyl residue in one molecule and the non-terminal valyl residue in a symmetry-related molecule.