940 resultados para Formal concept analysis
Resumo:
Un système, décrit avec un grand nombre d'éléments fortement interdépendants, est complexe, difficile à comprendre et à maintenir. Ainsi, une application orientée objet est souvent complexe, car elle contient des centaines de classes avec de nombreuses dépendances plus ou moins explicites. Une même application, utilisant le paradigme composant, contiendrait un plus petit nombre d'éléments, faiblement couplés entre eux et avec des interdépendances clairement définies. Ceci est dû au fait que le paradigme composant fournit une bonne représentation de haut niveau des systèmes complexes. Ainsi, ce paradigme peut être utilisé comme "espace de projection" des systèmes orientés objets. Une telle projection peut faciliter l'étape de compréhension d'un système, un pré-requis nécessaire avant toute activité de maintenance et/ou d'évolution. De plus, il est possible d'utiliser cette représentation, comme un modèle pour effectuer une restructuration complète d'une application orientée objets opérationnelle vers une application équivalente à base de composants tout aussi opérationnelle. Ainsi, La nouvelle application bénéficiant ainsi, de toutes les bonnes propriétés associées au paradigme composants. L'objectif de ma thèse est de proposer une méthode semi-automatique pour identifier une architecture à base de composants dans une application orientée objets. Cette architecture doit, non seulement aider à la compréhension de l'application originale, mais aussi simplifier la projection de cette dernière dans un modèle concret de composant. L'identification d'une architecture à base de composants est réalisée en trois grandes étapes: i) obtention des données nécessaires au processus d'identification. Elles correspondent aux dépendances entre les classes et sont obtenues avec une analyse dynamique de l'application cible. ii) identification des composants. Trois méthodes ont été explorées. La première utilise un treillis de Galois, la seconde deux méta-heuristiques et la dernière une méta-heuristique multi-objective. iii) identification de l'architecture à base de composants de l'application cible. Cela est fait en identifiant les interfaces requises et fournis pour chaque composant. Afin de valider ce processus d'identification, ainsi que les différents choix faits durant son développement, j'ai réalisé différentes études de cas. Enfin, je montre la faisabilité de la projection de l'architecture à base de composants identifiée vers un modèle concret de composants.
Resumo:
Implications between attributes can represent knowledge about objects in a specified context. This knowledge representation is especially useful when it is not possible to list all specified objects. Attribute exploration is a tool of formal concept analysis that supports the acquisition of this knowledge. For a specified context this interactive procedure determines a miminal list of valid implications between attributes of this context together with a list of objects which are counterexamples for all implications not valid in the context. This paper describes how the exploration can be modified such that it determines a mimimal set of implications that fills the gap between previously given implications (called background implications) and all valid implications. The list of implications can be simplified further if exceptions are allowed for the implications.
Resumo:
Formal Concept Analysis allows to derive conceptual hierarchies from data tables. Formal Concept Analysis is applied in various domains, e.g., data analysis, information retrieval, and knowledge discovery in databases. In order to deal with increasing sizes of the data tables (and to allow more complex data structures than just binary attributes), conceputal scales habe been developed. They are considered as metadata which structure the data conceptually. But in large applications, the number of conceptual scales increases as well. Techniques are needed which support the navigation of the user also on this meta-level of conceptual scales. In this paper, we attack this problem by extending the set of scales by hierarchically ordered higher level scales and by introducing a visualization technique called nested scaling. We extend the two-level architecture of Formal Concept Analysis (the data table plus one level of conceptual scales) to many-level architecture with a cascading system of conceptual scales. The approach also allows to use representation techniques of Formal Concept Analysis for the visualization of thesauri and ontologies.
Resumo:
In the last years, the main orientation of Formal Concept Analysis (FCA) has turned from mathematics towards computer science. This article provides a review of this new orientation and analyzes why and how FCA and computer science attracted each other. It discusses FCA as a knowledge representation formalism using five knowledge representation principles provided by Davis, Shrobe, and Szolovits [DSS93]. It then studies how and why mathematics-based researchers got attracted by computer science. We will argue for continuing this trend by integrating the two research areas FCA and Ontology Engineering. The second part of the article discusses three lines of research which witness the new orientation of Formal Concept Analysis: FCA as a conceptual clustering technique and its application for supporting the merging of ontologies; the efficient computation of association rules and the structuring of the results; and the visualization and management of conceptual hierarchies and ontologies including its application in an email management system.
Resumo:
In this paper we study two orthogonal extensions of the classical data mining problem of mining association rules, and show how they naturally interact. The first is the extension from a propositional representation to datalog, and the second is the condensed representation of frequent itemsets by means of Formal Concept Analysis (FCA). We combine the notion of frequent datalog queries with iceberg concept lattices (also called closed itemsets) of FCA and introduce two kinds of iceberg query lattices as condensed representations of frequent datalog queries. We demonstrate that iceberg query lattices provide a natural way to visualize relational association rules in a non-redundant way.
Resumo:
About ten years ago, triadic contexts were presented by Lehmann and Wille as an extension of Formal Concept Analysis. However, they have rarely been used up to now, which may be due to the rather complex structure of the resulting diagrams. In this paper, we go one step back and discuss how traditional line diagrams of standard (dyadic) concept lattices can be used for exploring and navigating triadic data. Our approach is inspired by the slice & dice paradigm of On-Line-Analytical Processing (OLAP). We recall the basic ideas of OLAP, and show how they may be transferred to triadic contexts. For modeling the navigation patterns a user might follow, we use the formalisms of finite state machines. In order to present the benefits of our model, we show how it can be used for navigating the IT Baseline Protection Manual of the German Federal Office for Information Security.
Resumo:
Clinical Research Data Quality Literature Review and Pooled Analysis We present a literature review and secondary analysis of data accuracy in clinical research and related secondary data uses. A total of 93 papers meeting our inclusion criteria were categorized according to the data processing methods. Quantitative data accuracy information was abstracted from the articles and pooled. Our analysis demonstrates that the accuracy associated with data processing methods varies widely, with error rates ranging from 2 errors per 10,000 files to 5019 errors per 10,000 fields. Medical record abstraction was associated with the highest error rates (70–5019 errors per 10,000 fields). Data entered and processed at healthcare facilities had comparable error rates to data processed at central data processing centers. Error rates for data processed with single entry in the presence of on-screen checks were comparable to double entered data. While data processing and cleaning methods may explain a significant amount of the variability in data accuracy, additional factors not resolvable here likely exist. Defining Data Quality for Clinical Research: A Concept Analysis Despite notable previous attempts by experts to define data quality, the concept remains ambiguous and subject to the vagaries of natural language. This current lack of clarity continues to hamper research related to data quality issues. We present a formal concept analysis of data quality, which builds on and synthesizes previously published work. We further posit that discipline-level specificity may be required to achieve the desired definitional clarity. To this end, we combine work from the clinical research domain with findings from the general data quality literature to produce a discipline-specific definition and operationalization for data quality in clinical research. While the results are helpful to clinical research, the methodology of concept analysis may be useful in other fields to clarify data quality attributes and to achieve operational definitions. Medical Record Abstractor’s Perceptions of Factors Impacting the Accuracy of Abstracted Data Medical record abstraction (MRA) is known to be a significant source of data errors in secondary data uses. Factors impacting the accuracy of abstracted data are not reported consistently in the literature. Two Delphi processes were conducted with experienced medical record abstractors to assess abstractor’s perceptions about the factors. The Delphi process identified 9 factors that were not found in the literature, and differed with the literature by 5 factors in the top 25%. The Delphi results refuted seven factors reported in the literature as impacting the quality of abstracted data. The results provide insight into and indicate content validity of a significant number of the factors reported in the literature. Further, the results indicate general consistency between the perceptions of clinical research medical record abstractors and registry and quality improvement abstractors. Distributed Cognition Artifacts on Clinical Research Data Collection Forms Medical record abstraction, a primary mode of data collection in secondary data use, is associated with high error rates. Distributed cognition in medical record abstraction has not been studied as a possible explanation for abstraction errors. We employed the theory of distributed representation and representational analysis to systematically evaluate cognitive demands in medical record abstraction and the extent of external cognitive support employed in a sample of clinical research data collection forms. We show that the cognitive load required for abstraction in 61% of the sampled data elements was high, exceedingly so in 9%. Further, the data collection forms did not support external cognition for the most complex data elements. High working memory demands are a possible explanation for the association of data errors with data elements requiring abstractor interpretation, comparison, mapping or calculation. The representational analysis used here can be used to identify data elements with high cognitive demands.
Resumo:
Currently, there is a great deal of well-founded explicit knowledge formalizing general notions, such as time concepts and the part_of relation. Yet, it is often the case that instead of reusing ontologies that implement such notions (the so-called general ontologies), engineers create procedural programs that implicitly implement this knowledge. They do not save time and code by reusing explicit knowledge, and devote effort to solve problems that other people have already adequately solved. Consequently, we have developed a methodology that helps engineers to: (a) identify the type of general ontology to be reused; (b) find out which axioms and definitions should be reused; (c) make a decision, using formal concept analysis, on what general ontology is going to be reused; and (d) adapt and integrate the selected general ontology in the domain ontology to be developed. To illustrate our approach we have employed use-cases. For each use case, we provide a set of heuristics with examples. Each of these heuristics has been tested in either OWL or Prolog. Our methodology has been applied to develop a pharmaceutical product ontology. Additionally, we have carried out a controlled experiment with graduated students doing a MCs in Artificial Intelligence. This experiment has yielded some interesting findings concerning what kind of features the future extensions of the methodology should have.
Resumo:
Good quality concept lattice drawings are required to effectively communicate logical structure in Formal Concept Analysis. Data analysis frameworks such as the Toscana System use manually arranged concept lattices to avoid the problem of automatically producing high quality lattices. This limits Toscana systems to a finite number of concept lattices that have been prepared a priori. To extend the use of formal concept analysis, automated techniques are required that can produce high quality concept lattice drawings on demand. This paper proposes and evaluates an adaption of layer diagrams to improve automated lattice drawing. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
The paper provides evidence that spatial indexing structures offer faster resolution of Formal Concept Analysis queries than B-Tree/Hash methods. We show that many Formal Concept Analysis operations, computing the contingent and extent sizes as well as listing the matching objects, enjoy improved performance with the use of spatial indexing structures such as the RD-Tree. Speed improvements can vary up to eighty times faster depending on the data and query. The motivation for our study is the application of Formal Concept Analysis to Semantic File Systems. In such applications millions of formal objects must be dealt with. It has been found that spatial indexing also provides an effective indexing technique for more general purpose applications requiring scalability in Formal Concept Analysis systems. The coverage and benchmarking are presented with general applications in mind.
Resumo:
This paper discusses an document discovery tool based on formal concept analysis. The program allows users to navigate email using a visual lattice metaphor rather than a tree. It implements a virtual file structure over email where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in email discovery. The system described provides more flexibility in retrieving stored emails than what is normally available in email clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems.
Resumo:
In this work we suggest the technology of creation of intelligent tutoring systems which are oriented to teach knowledge. It is supposed the acquisition of expert’s knowledge by using of the Formal Concept Analysis method, then construction the test questions which are used for verification of the pupil's knowledge with the expert’s knowledge. Then the further tutoring strategy is generated by the results of this verification.
Resumo:
En este trabajo los autores continúan su estudio de la caracterización de la existencia de adjunciones (conexiones de Galois isótonas) cuyo codominio no está dotado de estructura en principio. En este artículo se considera el caso difuso en el que se tiene un orden difuso R definido en un conjunto A y una aplicación sobreyectiva f:A-> B compatible respecto de dos relaciones de similaridad definidas en el dominio A y en el condominio B, respectivamente. Concretamente, el problema es encontrar un orden difuso S en B y una aplicación g:B-> A compatible también con las correspondientes similaridades definidas en A y en B, de tal forma que el par (f,g) constituya un adjunción.