960 resultados para Forest structure
Resumo:
Knowledge of tropical raptor habitat use is limited and yet a thorough understanding is vital when trying to conserve endangered species. We used a well studied, reintroduced population of the vulnerable Mauritius Kestrel Falco punctatus to investigate habitat preferences in a modified landscape. We constructed a high resolution digital habitat map and radiotracked 13 juvenile Kestrels to quantify habitat preferences. We distinguished seven habitat types in our study area and tracked Kestrels from 71 to 130 days old during which they dispersed from their natal territory and settled within a home-range after reaching independence. Mean home-range size was 0.95 km(2) characterized by a bimodal pattern of intensity around the natal site and post-independence home-range. Compositional analysis showed that home-ranges were located non-randomly with respect to habitat but there was no evidence to suggest differential use of habitats within home-ranges. Native and semi-invaded forest and grassland were consistently preferred, whereas agriculture was used significantly less than other habitats. No difference was found between the available length of edge dividing native forest and grassland within a home-range when compared to that available within a 2.35-km buffer around their nest-site, based on the maximum distance a juvenile was found to disperse. Repeating the analysis in three dimensions gave very similar results. Our results suggest that Mauritius Kestrels are not obligate forest dwellers as was once thought but can also exploit open habitats such as grassland. Kestrels may be using isolated mature trees within grassland as vantage points for hunting in the same way as they use the natural stratified forest structure. We suggest that the avoidance of agriculture is partly due to a lack of such vantage points. The conservation importance of forest degradation and agricultural encroachment is highlighted and comparisons with the habitat preferences of other tropical falcons are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
The exploitation of non-timber forest products is often considered a low-impact activity in tropical forests. However, assessments of the impacts of such activity are mostly focused on the harvested species and not on the plant community, thus limiting our understanding for establishing forest management recommendations. We investigated the consequences of Euterpe edulis palm heart harvesting on the seed rain in the Brazilian Atlantic rainforest. We compared the density of E. edulis individuals, as well as the density of E. edulis seeds, and the density, richness and functional composition of seed rain of the whole plant community, before and after palm heart harvesting in a 10 ha permanent plot. This assessment was carried out in preserved (typical old-growth Atlantic rainforest) and in disturbed (more open habitat dominated by the native bamboo Guadua tagoara) forest patches. Palm harvesting reduced the E. edulis population from 202.16 to 25.67 ind/ha and its seed rain density from 0.362 to 0.3 seeds/m2 and from 2.395 to 0.15 seeds/m2 in preserved and disturbed forest patches, respectively. Seed density of light-dependent climbers, pioneer trees, bamboo and animal-dispersed seeds increased after palm harvesting, especially in the disturbed forest patches, where palm harvesting was more intense and may have changed the light regime of the understory. On the other hand, species richness of the plant community declined by half. We observed a remarkable decline in the number of animal-dispersed species, especially for those with large seeds, suggesting that the activity of seed dispersers, including many species attracted by E. edulis fruits, was reduced. Therefore, harvesting of E. edulis palm heart may change the regeneration dynamics of the Atlantic rainforest, both due to shifts in forest structure, mediated by the removal of individuals from the forest canopy, and in community functioning, mediated by the interference on the activity of seed dispersers. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Lianas play a key role in forest structure, species diversity, as well as functional aspects of tropical forests. Although the study of lianas in the tropics has increased dramatically in recent years, basic information on liana communities for the Brazilian Atlantic Forest is still scarce. To understand general patterns of liana abundance and biomass along an elevational gradient (0-1,100 m asl) of coastal Atlantic Forest, we carried out a standard census for lianas a parts per thousand yen1 cm in five 1-ha plots distributed across different forest sites. On average, we found a twofold variation in liana abundance and biomass between lowland and other forest types. Large lianas (a parts per thousand yen10 cm) accounted for 26-35% of total liana biomass at lower elevations, but they were not recorded in montane forests. Although the abundance of lianas displayed strong spatial structure at short distances, the present local forest structure played a minor role structuring liana communities at the scale of 0.01 ha. Compared to similar moist and wet Neotropical forests, lianas are slightly less abundant in the Atlantic Forest, but the total biomass is similar. Our study highlights two important points: (1) despite some studies have shown the importance of small-scale canopy disturbance and support availability, the spatial scale of the relationships between lianas and forest structure can vary greatly among tropical forests; (2) our results add to the evidence that past canopy disturbance levels and minimum temperature variation exert influence on the structure of liana communities in tropical moist forests, particularly along short and steep elevational gradients.
Resumo:
The aim of this study was to explore potential causes and mechanisms for the sequence and temporal pattern of tree taxa, specifically for the shift from shrub-tundra to birch–juniper woodland during and after the transition from the Oldest Dryas to the Bølling–Allerød in the region surrounding the lake Gerzensee in southern Central Europe. We tested the influence of climate, forest dynamics, community dynamics compared to other causes for delays. For this aim temperature reconstructed from a δ18O-record was used as input driving the multi-species forest-landscape model TreeMig. In a stepwise scenario analysis, population dynamics along with pollen production and transport were simulated and compared with pollen-influx data, according to scenarios of different δ18O/temperature sensitivities, different precipitation levels, with/without inter-specific competition, and with/without prescribed arrival of species. In the best-fitting scenarios, the effects on competitive relationships, pollen production, spatial forest structure, albedo, and surface roughness were examined in more detail. The appearance of most taxa in the data could only be explained by the coldest temperature scenario with a sensitivity of 0.3‰/°C, corresponding to an anomaly of − 15 °C. Once the taxa were present, their temporal pattern was shaped by competition. The later arrival of Pinus could not be explained even by the coldest temperatures, and its timing had to be prescribed by first observations in the pollen record. After the arrival into the simulation area, the expansion of Pinus was further influenced by competitors and minor climate oscillations. The rapid change in the simulated species composition went along with a drastic change in forest structure, leaf area, albedo, and surface roughness. Pollen increased only shortly after biomass. Based on our simulations, two alternative potential scenarios for the pollen pattern can be given: either very cold climate suppressed most species in the Oldest Dryas, or they were delayed by soil formation or migration. One taxon, Pinus, was delayed by migration and then additionally hindered by competition. Community dynamics affected the pattern in two ways: potentially by facilitation, i.e. by nitrogen-fixing pioneer species at the onset, whereas the later pattern was clearly shaped by competition. The simulated structural changes illustrate how vegetation on a larger scale could feed back to the climate system. For a better understanding, a more integrated simulation approach covering also the immigration from refugia would be necessary, for this combines climate-driven population dynamics, migration, individual pollen production and transport, soil dynamics, and physiology of individual pollen production.
Resumo:
Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.
Resumo:
The spatial distributions of species of tree ≥10 cm gbh were examined in two 4 ha plots and related to the local variation in topography and soil chemistry. The plots were similar in their species composition, particularly in terms of the densities of small trees, and they showed very similar edaphic characteristics. Size class distributions varied little within and between plots. Ordination of 0.25 ha subplots highlighted parallel gradients in the vegetation of both plots when the densities of trees ≥10 cm gbh were considered. Focusing on understorey trees in the 10-<50 cm gbh class at the 0.04 ha subplot scale showed a similar vegetation gradient in both plots closely associated with change from lower slope to ridge. No relationship with soil chemistry was found. On the ridges a special group of understorey species formed clumps and these species contributed importantly to the ordinations. Borneo has a regional history of occasionally severe droughts. It is suggested here that the observed patterns in the understorey are due to differential responses to low soil water supply, the ridges probably tending to dryness more than the lower slopes. Within the large and diverse family Euphorbiaceae, which dominates the understorey at Danum, there may be ecophysiological groupings of species. The long-term effects of disturbance interacting with local edaphic factors on forest structure and composition are discussed.
Resumo:
Species?habitat associations may contribute to the maintenance of species richness in tropical forests, but previous research has been conducted almost exclusively in lowland forests and has emphasized the importance of topography and edaphic conditions. Is the distribution of woody plant species in a Peruvian cloud forest determined by microhabitat conditions? What is the role of environmental characteristics and forest structure in habitat partitioning in a tropical cloud forest? We examined species?habitat associations in three 1-ha plots using the torus-translation method. We used three different criteria to define habitats for habitat partitioning analyses, based on microtopography, forest structure and both sets of factors. The number of species associated either positively or negatively with each habitat was assessed. Habitats defined on the basis of environmental conditions and forest structure discriminated a greater number of positive and negative associations at the scale of our analyses in a tropical cloud forest. Both topographic conditions and forest structure contribute to small-scale microhabitat partitioning of woody plant species in a Peruvian tropical cloud forest. Nevertheless, canopy species were most correlated with the distribution of environmental variables, while understorey species displayed associations with forest structure.
Resumo:
Disponer de información precisa y actualizada de inventario forestal es una pieza clave para mejorar la gestión forestal sostenible y para proponer y evaluar políticas de conservación de bosques que permitan la reducción de emisiones de carbono debidas a la deforestación y degradación forestal (REDD). En este sentido, la tecnología LiDAR ha demostrado ser una herramienta perfecta para caracterizar y estimar de forma continua y en áreas extensas la estructura del bosque y las principales variables de inventario forestal. Variables como la biomasa, el número de pies, el volumen de madera, la altura dominante, el diámetro o la altura media son estimadas con una calidad comparable a los inventarios tradicionales de campo. La presente tesis se centra en analizar la aplicación de los denominados métodos de masa de inventario forestal con datos LIDAR bajo diferentes condiciones y características de masa forestal (bosque templados puros y mixtos) y utilizando diferentes bases de datos LiDAR (información proveniente de vuelo nacionales e información capturada de forma específica). Como consecuencia de lo anterior, se profundiza en la generación de inventarios forestales continuos con LiDAR en grandes áreas. Los métodos de masa se basan en la búsqueda de relaciones estadísticas entre variables predictoras derivadas de la nube de puntos LiDAR y las variables de inventario forestal medidas en campo con el objeto de generar una cartografía continua de inventario forestal. El rápido desarrollo de esta tecnología en los últimos años ha llevado a muchos países a implantar programas nacionales de captura de información LiDAR aerotransportada. Estos vuelos nacionales no están pensados ni diseñados para fines forestales por lo que es necesaria la evaluación de la validez de esta información LiDAR para la descripción de la estructura del bosque y la medición de variables forestales. Esta información podría suponer una drástica reducción de costes en la generación de información continua de alta resolución de inventario forestal. En el capítulo 2 se evalúa la estimación de variables forestales a partir de la información LiDAR capturada en el marco del Plan Nacional de Ortofotografía Aérea (PNOA-LiDAR) en España. Para ello se compara un vuelo específico diseñado para inventario forestal con la información de la misma zona capturada dentro del PNOA-LiDAR. El caso de estudio muestra cómo el ángulo de escaneo, la pendiente y orientación del terreno afectan de forma estadísticamente significativa, aunque con pequeñas diferencias, a la estimación de biomasa y variables de estructura forestal derivadas del LiDAR. La cobertura de copas resultó más afectada por estos factores que los percentiles de alturas. Considerando toda la zona de estudio, la estimación de la biomasa con ambas bases de datos no presentó diferencias estadísticamente significativas. Las simulaciones realizadas muestran que las diferencias medias en la estimación de biomasa entre un vuelo específico y el vuelo nacional podrán superar el 4% en áreas abruptas, con ángulos de escaneo altos y cuando la pendiente de la ladera no esté orientada hacia la línea de escaneo. En el capítulo 3 se desarrolla un estudio en masas mixtas y puras de pino silvestre y haya, con un enfoque multi-fuente empleando toda la información disponible (vuelos LiDAR nacionales de baja densidad de puntos, imágenes satelitales Landsat y parcelas permanentes del inventario forestal nacional español). Se concluye que este enfoque multi-fuente es adecuado para realizar inventarios forestales continuos de alta resolución en grandes superficies. Los errores obtenidos en la fase de ajuste y de validación de los modelos de área basimétrica y volumen son similares a los registrados por otros autores (usando un vuelo específico y parcelas de campo específicas). Se observan errores mayores en la variable número de pies que los encontrados en la literatura, que pueden ser explicados por la influencia de la metodología de parcelas de radio variable en esta variable. En los capítulos 4 y 5 se evalúan los métodos de masa para estimar biomasa y densidad de carbono en bosques tropicales. Para ello se trabaja con datos del Parque Nacional Volcán Poás (Costa Rica) en dos situaciones diferentes: i) se dispone de una cobertura completa LiDAR del área de estudio (capitulo 4) y ii) la cobertura LiDAR completa no es técnica o económicamente posible y se combina una cobertura incompleta de LiDAR con imágenes Landsat e información auxiliar para la estimación de biomasa y carbono (capitulo 5). En el capítulo 4 se valida un modelo LiDAR general de estimación de biomasa aérea en bosques tropicales y se compara con los resultados obtenidos con un modelo ajustado de forma específica para el área de estudio. Ambos modelos están basados en la variable altura media de copas (TCH por sus siglas en inglés) derivada del modelo digital LiDAR de altura de la vegetación. Los resultados en el área de estudio muestran que el modelo general es una alternativa fiable al ajuste de modelos específicos y que la biomasa aérea puede ser estimada en una nueva zona midiendo en campo únicamente la variable área basimétrica (BA). Para mejorar la aplicación de esta metodología es necesario definir en futuros trabajos procedimientos adecuados de medición de la variable área basimétrica en campo (localización, tamaño y forma de las parcelas de campo). La relación entre la altura media de copas del LiDAR y el área basimétrica (Coeficiente de Stock) obtenida en el área de estudio varía localmente. Por tanto es necesario contar con más información de campo para caracterizar la variabilidad del Coeficiente de Stock entre zonas de vida y si estrategias como la estratificación pueden reducir los errores en la estimación de biomasa y carbono en bosques tropicales. En el capítulo 5 se concluye que la combinación de una muestra sistemática de información LiDAR con una cobertura completa de imagen satelital de moderada resolución (e información auxiliar) es una alternativa efectiva para la realización de inventarios continuos en bosques tropicales. Esta metodología permite estimar altura de la vegetación, biomasa y carbono en grandes zonas donde la captura de una cobertura completa de LiDAR y la realización de un gran volumen de trabajo de campo es económica o/y técnicamente inviable. Las alternativas examinadas para la predicción de biomasa a partir de imágenes Landsat muestran una ligera disminución del coeficiente de determinación y un pequeño aumento del RMSE cuando la cobertura de LiDAR es reducida de forma considerable. Los resultados indican que la altura de la vegetación, la biomasa y la densidad de carbono pueden ser estimadas en bosques tropicales de forma adecuada usando coberturas de LIDAR bajas (entre el 5% y el 20% del área de estudio). ABSTRACT The availability of accurate and updated forest data is essential for improving sustainable forest management, promoting forest conservation policies and reducing carbon emissions from deforestation and forest degradation (REDD). In this sense, LiDAR technology proves to be a clear-cut tool for characterizing forest structure in large areas and assessing main forest-stand variables. Forest variables such as biomass, stem volume, basal area, mean diameter, mean height, dominant height, and stem number can be thus predicted with better or comparable quality than with costly traditional field inventories. In this thesis, it is analysed the potential of LiDAR technology for the estimation of plot-level forest variables under a range of conditions (conifer & broadleaf temperate forests and tropical forests) and different LiDAR capture characteristics (nationwide LiDAR information vs. specific forest LiDAR data). This study evaluates the application of LiDAR-based plot-level methods in large areas. These methods are based on statistical relationships between predictor variables (derived from airborne data) and field-measured variables to generate wall to wall forest inventories. The fast development of this technology in recent years has led to an increasing availability of national LiDAR datasets, usually developed for multiple purposes throughout an expanding number of countries and regions. The evaluation of the validity of nationwide LiDAR databases (not designed specifically for forest purposes) is needed and presents a great opportunity for substantially reducing the costs of forest inventories. In chapter 2, the suitability of Spanish nationwide LiDAR flight (PNOA) to estimate forest variables is analyzed and compared to a specifically forest designed LiDAR flight. This study case shows that scan angle, terrain slope and aspect significantly affect the assessment of most of the LiDAR-derived forest variables and biomass estimation. Especially, the estimation of canopy cover is more affected than height percentiles. Considering the entire study area, biomass estimations from both databases do not show significant differences. Simulations show that differences in biomass could be larger (more than 4%) only in particular situations, such as steep areas when the slopes are non-oriented towards the scan lines and the scan angles are larger than 15º. In chapter 3, a multi-source approach is developed, integrating available databases such as nationwide LiDAR flights, Landsat imagery and permanent field plots from SNFI, with good resultos in the generation of wall to wall forest inventories. Volume and basal area errors are similar to those obtained by other authors (using specific LiDAR flights and field plots) for the same species. Errors in the estimation of stem number are larger than literature values as a consequence of the great influence that variable-radius plots, as used in SNFI, have on this variable. In chapters 4 and 5 wall to wall plot-level methodologies to estimate aboveground biomass and carbon density in tropical forest are evaluated. The study area is located in the Poas Volcano National Park (Costa Rica) and two different situations are analyzed: i) available complete LiDAR coverage (chapter 4) and ii) a complete LiDAR coverage is not available and wall to wall estimation is carried out combining LiDAR, Landsat and ancillary data (chapter 5). In chapter 4, a general aboveground biomass plot-level LiDAR model for tropical forest (Asner & Mascaro, 2014) is validated and a specific model for the study area is fitted. Both LiDAR plot-level models are based on the top-of-canopy height (TCH) variable that is derived from the LiDAR digital canopy model. Results show that the pantropical plot-level LiDAR methodology is a reliable alternative to the development of specific models for tropical forests and thus, aboveground biomass in a new study area could be estimated by only measuring basal area (BA). Applying this methodology, the definition of precise BA field measurement procedures (e.g. location, size and shape of the field plots) is decisive to achieve reliable results in future studies. The relation between BA and TCH (Stocking Coefficient) obtained in our study area in Costa Rica varied locally. Therefore, more field work is needed for assessing Stocking Coefficient variations between different life zones and the influence of the stratification of the study areas in tropical forests on the reduction of uncertainty. In chapter 5, the combination of systematic LiDAR information sampling and full coverage Landsat imagery (and ancillary data) prove to be an effective alternative for forest inventories in tropical areas. This methodology allows estimating wall to wall vegetation height, biomass and carbon density in large areas where full LiDAR coverage and traditional field work are technically and/or economically unfeasible. Carbon density prediction using Landsat imaginery shows a slight decrease in the determination coefficient and an increase in RMSE when harshly decreasing LiDAR coverage area. Results indicate that feasible estimates of vegetation height, biomass and carbon density can be accomplished using low LiDAR coverage areas (between 5% and 20% of the total area) in tropical locations.
Resumo:
Spatial heterogeneity in soils is often characterized by the presence of resource-enriched patches ranging in size from a single shrub to wooded thickets. If the patches persist long enough, the primary constraint on production may transition from one limiting environmental factor to another. Tree islands that are scattered throughout the Florida Everglades basin comprise nutrient-enriched patches, or resource islands, in P-limited oligotrophic marshes. We used principal component analysis and multiple regressions to characterize the belowground environment (soil, hydrology) of one type of tree island, hardwood hammocks, and examined its relationship with the three structural variables (basal area, biomass, and canopy height) indicative of site productivity. Hardwood hammocks in the southern Everglades grow on two distinct soil types. The first, consisting of shallow, organic, relatively low-P soils, is common in the seasonally flooded Marl Prairie landscape. In contrast, hammocks on islands embedded in long hydroperiod marsh have deeper, alkaline, mineral soils with extremely high P concentrations. However, this edaphic variation does not translate simply into differences in forest structure and production. Relative water depth was unrelated to all measures of forest structure and so was soil P, but the non-carbonate component of the mineral soil fraction exhibited a strong positive relationship with canopy height. The development of P-enriched forest resource islands in the Everglades marsh is accompanied by the buildup of a mineral soil; however, limitations on growth in mature islands appear to differ substantively from those that dominate incipient stages in the transformation from marsh to forest. Key words: resource island; tree
Resumo:
Tree islands are an important structural component of many graminoid-dominated wetlands because they increase ecological complexity in the landscape. Tree island area has been drastically reduced with hydrologic modifications within the Everglades ecosystem, yet still little is known about the ecosystem ecology of Everglades tree islands. As part of an ongoing study to investigate the effects of hydrologic restoration on short hydroperiod marshes of the southern Everglades, we report an ecosystem characterization of seasonally flooded tree islands relative to locations described by variation in freshwater flow (i.e. locally enhanced freshwater flow by levee removal). We quantified: (1) forest structure, litterfall production, nutrient utilization, soil dynamics, and hydrologic properties of six tree islands and (2) soil and surface water physico-chemical properties of adjacent marshes. Tree islands efficiently utilized both phosphorus and nitrogen, but indices of nutrient-use efficiency indicated stronger P than N limitation. Tree islands were distinct in structure and biogeochemical properties from the surrounding marsh, maintaining higher organically bound P and N, but lower inorganic N. Annual variation resulting in increased hydroperiod and lower wet season water levels not only increased nitrogen use by tree species and decreased N:P values of the dominant plant species (Chrysobalanus icaco), but also increased soil pH and decreased soil temperature. When compared with other forested wetlands, these Everglades tree islands were among the most nutrient efficient, likely a function of nutrient immobilization in soils and the calcium carbonate bedrock. Tree islands of our study area are defined by: (1) unique biogeochemical properties when compared with adjacent short hydroperiod marshes and other forested wetlands and (2) an intricate relationship with marsh hydrology. As such, they may play an important and disproportionate role in nutrient and carbon cycling in Everglades wetlands. With the loss of tree islands that has occurred with the degradation of the Everglades system, these landscape processes may have been altered. With this baseline dataset, we have established a long-term ecosystem-scale experiment to follow the ecosystem trajectory of seasonally flooded tree islands in response to hydrologic restoration of the southern Everglades.
Resumo:
This report examines the interaction between hydrology and vegetation over a 10-year period, between 2001/02 and 2012 within six permanent tree island plots located on three tree islands, two plots each per tree island, established in 2001/02, along a hydrologic and productivity gradient. We hypothesize that: (H1) hydrologic differences within plots between census dates will result in marked differences in a) tree and sapling densities, b) tree basal area, and c) forest structure, i.e., canopy volume and height, and (H2) tree island growth, development, and succession is dependent on hydrologic fluxes, particularly during periods of prolonged droughts or below average hydroperiods.
Resumo:
The paper describes a forest management system to be applied on smallholder farms, particularly on settlement projects in the Brazilian Amazon. The proposed forest management system was designed to generate a new source of family income and to maintain forest structure and biodiversity. The system is new in three main characteristics: the use of short cycles in the management of tropical forests, the low harvesting intensity and environmental impact, and the direct involvement of the local population in ali forest management activities. It is based on a minimum felling cycle of ten years and an annual timber harvest of 5-10 m3 ha-1.