968 resultados para Forecasting Tailings Model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we investigate the ability of a number of different ordered probit models to predict ratings based on firm-specific data on business and financial risks. We investigate models based on momentum, drift and ageing and compare them against alternatives that take into account the initial rating of the firm and its previous actual rating. Using data on US bond issuing firms rated by Fitch over the years 2000 to 2007 we compare the performance of these models in predicting the rating in-sample and out-of-sample using root mean squared errors, Diebold-Mariano tests of forecast performance and contingency tables. We conclude that initial and previous states have a substantial influence on rating prediction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for a particular type of diffuse, for Minnesota-type and for hierarchical priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research concerns different statistical methods that assist to increase the demand forecasting accuracy of company X’s forecasting model. Current forecasting process was analyzed in details. As a result, graphical scheme of logical algorithm was developed. Based on the analysis of the algorithm and forecasting errors, all the potential directions for model future improvements in context of its accuracy were gathered into the complete list. Three improvement directions were chosen for further practical research, on their basis, three test models were created and verified. Novelty of this work lies in the methodological approach of the original analysis of the model, which identified its critical points, as well as the uniqueness of the developed test models. Results of the study formed the basis of the grant of the Government of St. Petersburg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study addresses three issues: spatial downscaling, calibration, and combination of seasonal predictions produced by different coupled ocean-atmosphere climate models. It examines the feasibility Of using a Bayesian procedure for producing combined, well-calibrated downscaled seasonal rainfall forecasts for two regions in South America and river flow forecasts for the Parana river in the south of Brazil and the Tocantins river in the north of Brazil. These forecasts are important for national electricity generation management and planning. A Bayesian procedure, referred to here as forecast assimilation, is used to combine and calibrate the rainfall predictions produced by three climate models. Forecast assimilation is able to improve the skill of 3-month lead November-December-January multi-model rainfall predictions over the two South American regions. Improvements are noted in forecast seasonal mean values and uncertainty estimates. River flow forecasts are less skilful than rainfall forecasts. This is partially because natural river flow is a derived quantity that is sensitive to hydrological as well as meteorological processes, and to human intervention in the form of reservoir management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With many operational centers moving toward order 1-km-gridlength models for routine weather forecasting, this paper presents a systematic investigation of the properties of high-resolution versions of the Met Office Unified Model for short-range forecasting of convective rainfall events. The authors describe a suite of configurations of the Met Office Unified Model running with grid lengths of 12, 4, and 1 km and analyze results from these models for a number of convective cases from the summers of 2003, 2004, and 2005. The analysis includes subjective evaluation of the rainfall fields and comparisons of rainfall amounts, initiation, cell statistics, and a scale-selective verification technique. It is shown that the 4- and 1-km-gridlength models often give more realistic-looking precipitation fields because convection is represented explicitly rather than parameterized. However, the 4-km model representation suffers from large convective cells and delayed initiation because the grid length is too long to correctly reproduce the convection explicitly. These problems are not as evident in the 1-km model, although it does suffer from too numerous small cells in some situations. Both the 4- and 1-km models suffer from poor representation at the start of the forecast in the period when the high-resolution detail is spinning up from the lower-resolution (12 km) starting data used. A scale-selective precipitation verification technique implies that for later times in the forecasts (after the spinup period) the 1-km model performs better than the 12- and 4-km models for lower rainfall thresholds. For higher thresholds the 4-km model scores almost as well as the 1-km model, and both do better than the 12-km model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract We present a refined parametric model for forecasting electricity demand which performed particularly well in the recent Global Energy Forecasting Competition (GEFCom 2012). We begin by motivating and presenting a simple parametric model, treating the electricity demand as a function of the temperature and day of the data. We then set out a series of refinements of the model, explaining the rationale for each, and using the competition scores to demonstrate that each successive refinement step increases the accuracy of the model’s predictions. These refinements include combining models from multiple weather stations, removing outliers from the historical data, and special treatments of public holidays.