990 resultados para Foraminifera, Fossil.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 136 m of calcareous oozes recovered in Hole 810C span the interval from upper Maastrichtian to middle Pleistocene. Three major hiatuses interrupt the sequence, with the topmost part of the Maastrichtian through the entire lower Paleocene, most of the lower Eocene, and the entire middle Eocene through most of the middle Miocene missing. Severe reworking and displacement affected the lower part of the succession from the Maastrichtian through the middle Miocene. Reworking and displacement gradually decreased in the upper portion. Calcareous nannofossil biostratigraphy enabled us to calibrate precisely the nearly complete magnetic reversal sequence of the Pliocene to the late Pleistocene. Two minor hiatuses detected by calcareous nannofossils across the Pliocene/Pleistocene boundary and in the upper lower Pleistocene, respectively, resulted in shortening of the Olduvai and Jaramillo Events within the Matuyama Chron of the magnetic reversal sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages of distinctive taxonomic composition occur at the top of benthic fossil-free black shales which correspond to the anoxic event at the Cenomanian/Turonian boundary in the North Atlantic abyssal DSDP/ODP sites 386, 398, 603 and 641. These assemblages consist of minute, thin-walled agglutinated foraminifera with low specific diversity of 2 to 4 species, variable abundance and dominance of few taxa (Haplophragmoides, Rhizammina and Glomospira). The species are inferred to be opportunistic, able to survive in low-oxygen environments and to be pioneers recolonizing the seafloor after cessation of bottom-water anoxia. Most species are characterized by test morphologies with high surface/volume ratios and single-layered wall structures, with loosely agglutinated grains, and small amounts of organic cement for agglutination. These features are best observed in material from ODP Hole 641A which has exceptional foraminiferai preservation because of its shallow burial depth. The successive appearance of benthic foraminifera after the anoxic event is probably controlled by the continuous reoccurrence of more oxygenated bottom- and interstitial-water conditions. With the final development of oxic bottom-water conditions in the Turonian, a rapid radiation of deep-water agglutinated foraminifera occurred in the North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we demonstrate the utility of amino acid geochronology based on single-foraminiferal tests in Quaternary sediment cores from the Queensland margin, Australia. The large planktonic foraminifer Pulleniatina obliquiloculata is ubiquitous in shelf, slope, and basin sediments of north Queensland as well as pantropical oceans. Fossil tests are resistant to dissolution, and retain substantial concentrations of amino acids (2-4 nmol/mg of shell) over hundreds of thousands of years. Amino acid D and L isomers of aspartic acid (Asp) and glutamic acid (Glu) were separated using reverse phase chromatography, which is sensitive enough to analyze individual foraminifera tests. In all, 462 Pulleniatina tests from 80 horizons in 11 cores exhibit a systematic increase in D/L ratios down core. D/L ratios were determined in 32 samples whose ages are known from AMS 14C analyses. In all cases, the Asp and Glu D/L ratios are concordant with 14C age. D/L ratios of equal-age samples are slightly lower for cores taken from deeper water sites, reflecting the sensitivity of the rate of racemization to bottom water temperature. Beyond the range of 14C dating, previously identified marine oxygen-isotope stage boundaries provide approximate ages of the sediments up to about 500,000 years. For this longer time frame, D/L ratios also vary systematically with isotope-correlated ages. The rate of racemization for Glu and Asp was modeled using power functions. These equations can be used to estimate ages of samples from the Queensland margin extending back at least 500,000 years. This analytical approach provides new opportunities for geochronological control necessary to understand fundamental sedimentary processes affecting a wide range of marine environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed 87Sr/86Sr ratios in foraminifera, pore fluids, and fish teeth for samples ranging in age from Eocene to Pleistocene from four Ocean Drilling Program sites distributed around the globe: Site 1090 in the Cape Basin of the Southern Ocean, Site 757 on the Ninetyeast Ridge in the Indian Ocean, Site 807 on the Ontong-Java Plateau in the western equatorial Pacific, and Site 689 on the Maud Rise in the Southern Ocean. Sr isotopic ratios for dated foraminifera consistently plot on the global seawater Sr isotope curve. For Sites 1090, 757, and 807 Sr isotopic values of the pore fluids are generally less radiogenic than contemporaneous seawater values, as are values for fossil fish teeth. In contrast, pore fluid 87Sr/86Sr values at Site 689 are more radiogenic than contemporaneous seawater, and the corresponding fish teeth also record more radiogenic values. Thus, Sr isotopic values preserved in fossil fish teeth are consistently altered in the direction of the pore fluid values; furthermore, there is a correlation between the magnitude of the offset between the pore fluids and the seawater curve, and the associated offset between the fish teeth and the seawater curve. These data suggest that the hydroxyfluorapatite of the fossil fish teeth continues to recrystallize and exchange Sr with its surroundings during burial and diagenesis. Therefore, Sr chemostratigraphy can be used to determine rough ages for fossil fish teeth in these cores, but cannot be used to fine-tune age models. In contrast to the Sr isotopic system, our Nd concentration data, combined with published isotopic and rare earth element data, suggest that fish teeth acquire Nd during early diagenesis while they are still in direct contact with seawater. The concentrations of Nd acquired at this stage are extremely high relative to the concentrations in surrounding pore fluids. As a result, Nd isotopes are not altered during burial and later diagenesis. Therefore, fossil fish teeth from a variety of marine environments preserve a reliable and robust record of deep seawater Nd isotopic compositions from the time of deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distinctive low-carbonate interval interrupts the continuous limestone-marl alternation of the deep-marine Gorrondatxe section at the early Lutetian (middle Eocene) C21r/C21n Chron transition. The interval is characterized by increased abundance of turbidites and kaolinite, a 3 per mil decline in the bulk d13C record, a >1 per mil decline in benthic foraminiferal d13C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminiferal diversity, thus recording a significant environmental perturbation. The onset of the perturbation correlates with the C21r-H6 event recently defined in the Atlantic and Pacific oceans, which caused a 2°C warming of the seafloor and increased carbonate dissolution. The perturbation was likely caused by the input of 13C-depleted carbon into the ocean-atmosphere system, thus presenting many of the hallmarks of Paleogene hyperthermal deposits. However, from the available data it is not possible to conclusively state that the event was associated with extreme global warming. Based on our analysis, the perturbation lasted 226 kyr, from 47.44 to 47.214 Ma, and although this duration suggests that the triggering mechanism may have been similar to that of the Paleocene-Eocene Thermal Maximum (PETM), the magnitude of the carbon input and the subsequent environmental perturbation during the early Lutetian event were not as severe as in the PETM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of numerical equations is developed to estimate past sea surface temperatures (SST) from fossil Antarctic diatoms. These equations take into account both the biogeographic distribution and experimentally derived silica dissolution. The data represent a revision and expansion of a floral data base used previously and includes samples resulting from progressive opal dissolution experiments. Factor analysis of 166 samples (124 Holocene core top and 42 artificial samples) resolved four factors. Three of these factors depend on the water mass distribution (one Subantarctic and two Antarctic assemblages); factor 4 corresponds to a 'dissolution assemblage'. Inclusion of this factor in the data analysis minimizes the effect of opal dissolution on the assemblages and gives accurate estimates of SST over a wide range of biosiliceous dissolution. A transfer function (DTF 166/34/4) is derived from the distribution of these factors versus summer SST. Its standard error is +/- 1°C in the -1 to +10 °C summer temperature range. This transfer function is used to estimate SST changes in two southern ocean cores (43°S and 55°S) which cover the last climatic cycle. The time scale is derived from the changes in foraminiferal oxygen and carbon isotopic ratios. The reconstructed SST records present strong analogies with the air temperature record over Antarctica at the Vostok site, derived from changes in the isotopic ratio of the ice. This similarity may be used to compare the oceanic isotope stratigraphy and the Vostok time scale derived from ice flow model. The oceanic time scale, if taken at face value, would indicate that large changes in ice accumulation rates occurred between warm and cold periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the late Paleocene to early Eocene, deep sea benthic foraminifera suffered their only global extinction of the last 75 million years and diversity decreased worldwide by 30-50% in a few thousand years. At Maud Rise (Weddell Sea, Antarctica; Sites 689 and 690, palaeodepths 1100 m and 1900 m) and Walvis Ridge (Southeastern Atlantic, Sites 525 and 527, palaeodepths 1600 m and 3400 m) post-extinction faunas were low-diversity and high-dominance, but the dominant species differed by geographical location. At Maud Rise, post-extinction faunas were dominated by small, biserial and triserial species, while the large, thick-walled, long-lived deep sea species Nuttallides truempyi was absent. At Walvis Ridge, by contrast, they were dominated by long-lived species such as N. truempyi, with common to abundant small abyssaminid species. The faunal dominance patterns at the two locations thus suggest different post-extinction seafloor environments: increased flux of organic matter and possibly decreased oxygen levels at Maud Rise, decreased flux at Walvis Ridge. The species-richness remained very low for about 50 000 years, then gradually increased. The extinction was synchronous with a large, negative, short-term excursion of carbon and oxygen isotopes in planktonic and benthic foraminifera and bulk carbonate. The isotope excursions reached peak negative values in a few thousand years and values returned to pre-excursion levels in about 50 000 years. The carbon isotope excursion was about -2 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, and about -4 per mil for planktonic foraminifera at Maud Rise. At the latter sites vertical gradients thus decreased, possibly at least partially as a result of upwelling. The oxygen isotope excursion was about -1.5 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, -1 per mil for planktonic foraminifera at Maud Rise. The rapid oxygen isotope excursion at a time when polar ice-sheets were absent or insignificant can be explained by an increase in temperature by 4-6°C of high latitude surface waters and deep waters world wide. The deep ocean temperature increase could have been caused by warming of surface waters at high latitudes and continued formation of the deep waters at these locations, or by a switch from dominant formation of deep waters at high latitudes to formation at lower latitudes. Benthic foraminiferal post-extinction biogeographical patterns favour the latter explanation. The short-term carbon isotope excursion occurred in deep and surface waters, and in soil concretions and mammal teeth in the continental record. It is associated with increased CaC03-dissolution over a wide depth range in the oceans, suggesting that a rapid transfer of isotopically light carbon from lithosphere or biosphere into the ocean-atmosphere system may have been involved. The rapidity of the initiation of the excursion (a few thousand years) and its short duration (50 000 years) suggest that such a transfer was probably not caused by changes in the ratio of organic carbon to carbonate deposition or erosion. Transfer of carbon from the terrestrial biosphere was probably not the cause, because it would require a much larger biosphere destruction than at the end of the Cretaceous, in conflict with the fossil record. It is difficult to explain the large shift by rapid emission into the atmosphere of volcanogenic CO2, although huge subaerial plateau basalt eruptions occurred at the time in the northern Atlantic. Probably a complex combination of processes and feedback was involved, including volcanogenic emission of CO2, changing circulation patterns, changing productivity in the oceans and possibly on land, and changes in the relative size of the oceanic and atmospheric carbon reservoirs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The course of sea-level fluctuations during Termination II (TII; the penultimate deglaciation), which is critical for understanding ice-sheet dynamics and suborbital climate variability, has yet to be established. This is partly because most shallow-water sequences encompassing TII were eroded during sea-level lowstands of the last glacial period or were deposited below the present sea level. Here we report a new sequence recording sea-level changes during TII in the Pleistocene sequence at Hole M0005D (water depth: 59.63 m below sea level [mbsl]) off Tahiti, French Polynesia, which was drilled during Integrated Ocean Drilling Program Expedition 310. Lithofacies variations and stratigraphic changes in the taxonomic composition, preservation states, and intraspecific test morphology of large benthic foraminifers indicate a deepening-upward sequence in the interval from Core 310-M0005D-26R (core depth: 134 mbsl) through -16R (core depth: 106 mbsl). Reconstruction of relative sea levels, based on paleodepth estimations using large benthic foraminifers, indicated a rise in sea level of about 90 m during this interval, suggesting its correlation with one of the terminations. Assuming that this rise in sea level corresponds to that during TII, after correcting for subsidence since the time of deposition, a highstand sea-level position would be 2 ± 15 m above present sea level (masl), which is generally consistent with highstand sea-level positions in MIS 5e (4 ± 2 masl). If this rise in sea level corresponds to that during older terminations, the subsidence-corrected highstand sea-level positions (30 ± 15 masl for Termination III and 54 ± 15 masl for Termination IV) are not consistent with reported ranges of interglacial sea-level highstands (-18 to 15 masl). Therefore, the studied interval likely records the rise in sea level and associated environmental changes during TII. In particular, the intervening cored materials between the two episodes of sea-level rise found in the studied interval might record the sea-level reversal event during TII. This conclusion is consistent with U/Th ages of around 133 ka, which were obtained from slightly diagenetically altered (i.e., < 1% calcite) in situ corals in the studied interval (Core 310-M0005D-20R [core depth: 118 mbsl]). This study also suggests that our inverse approach to correlate a stratigraphic interval with an approximate time frame could be useful as an independent check on the accuracy of uranium-series dating, which has been applied extensively to fossil corals in late Quaternary sea-level studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early Cenozoic marine carbon isotopic record is marked by a long-term shift from high d13C values in the late Paleocene to values that are 2 to 3 lower in the early Eocene. The shift is recorded in fossil carbonates from each ocean basin and represents a large change in the distribution of 12C between the ocean and other carbon reservoirs. Superimposed upon this long-term shift are several distinct carbon isotopic negative excursions that are also recorded globally. These carbon isotopic 'events' near the Paleocene-Eocene boundary provide strati-graphic information that can facilitate intersite correlations between marine and non-marine sequences. Here we present a detailed marine carbon isotopic stratigraphy across the Paleocene-Eocene boundary that is constrained by calcareous nannofossil and planktonic foraminifera bio-stratigraphy and magnetostratigraphy. We show that several distinct carbon isotopic changes are recorded in uppermost Paleocene and lowermost Eocene marine biogenic carbonate sediments. At least one of these isotopic changes in the ocean's carbon isotopic composition was transmitted to terrestrial carbon reservoirs, including plant biomass via atmospheric CO2. As a consequence of this exchange of 12C between the ocean and terrestrial carbon reservoirs, it is possible to use carbon isotope stratigraphy to correlate the uppermost Paleocene and lowermost Eocene non-fossiliferous terrestrial sediments of the Paris Basin with marine sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using shells collected from a sediment trap series in the Madeira Basin, we investigate the effects of seasonal variation of temperature, productivity, and optimum growth conditions on calcification in three species of planktonic Foraminifera. The series covers an entire seasonal cycle and reflects conditions at the edge of the distribution of the studied species, manifesting more suitable growth conditions during different parts of the year. The seasonal variation in seawater carbonate saturation at the studied site is negligible compared to other oceanic regions, allowing us to assess the effect of parameters other than carbonate saturation. Shell calcification is quantified using weight and size of individual shells. The size-weight scaling within each species is robust against changes in environmental parameters, but differs among species. An analysis of the variation in calcification intensity (size-normalized weight) reveals species-specific response patterns. In Globigerinoides ruber (white) and Globigerinoides elongatus, calcification intensity is correlated with temperature (positive) and productivity (negative), whilst in Globigerina bulloides no environmental forcing is observed. The size-weight scaling, calcification intensity, and response of calcification intensity to environmental change differed between G. ruber (white) and G. elongatus, implying that patterns extracted from pooled analyses of these species may reflect their changing proportions in the samples. Using shell flux as a measure of optimum growth conditions, we observe significant positive correlation with calcification intensity in G. elongatus, but negative correlation in G. bulloides. The lack of a consistent response of calcification intensity to optimum growth conditions is mirrored by the results of shell size analyses. We conclude that calcification intensity in planktonic Foraminifera is affected by factors other than carbonate saturation. These factors include temperature, productivity, and optimum growth conditions, but the strength and sign of the relationships differ among species, potentially complicating interpretations of calcification data from the fossil record.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lower part of the syn-rift Barremian-?Hauterivian section at Site 549 contains a large amount of acid-resistant land-derived organic matter that, as elsewhere in the Cretaceous sediments of the IPOD Leg 80 sites, is thermally immature. This plant debris was derived from a vegetation made up of many species of pteridophytes and gymnosperms. The palynofacies indicate that the sediments were deposited in shallow marginal and nonmarine environments and that the climate was probably warm temperate and fairly moist at the time. Source potential for gas is suggested at some horizons. Most of the younger Lower Cretaceous sediments at this and the other sites were deposited in more open marine conditions. Although they generally contain less organic matter, land plant remains continue to comprise a major part of the palynofacies. The Upper Cretaceous sediments were mainly deposited in well oxygenated conditions and are organically lean. However, stratigraphically restricted dark-colored shales at Sites 549 to 551 contain relatively large quantities of amorphous detritus of at least partly marine origin. These characteristics are suggestive of deposition during periods of restricted circulation and also of source potential for oil and gas if maturation levels had been higher.