885 resultados para Fluid loss control
Resumo:
Instrumentation and automation plays a vital role to managing the water industry. These systems generate vast amounts of data that must be effectively managed in order to enable intelligent decision making. Time series data management software, commonly known as data historians are used for collecting and managing real-time (time series) information. More advanced software solutions provide a data infrastructure or utility wide Operations Data Management System (ODMS) that stores, manages, calculates, displays, shares, and integrates data from multiple disparate automation and business systems that are used daily in water utilities. These ODMS solutions are proven and have the ability to manage data from smart water meters to the collaboration of data across third party corporations. This paper focuses on practical, utility successes in the water industry where utility managers are leveraging instantaneous access to data from proven, commercial off-the-shelf ODMS solutions to enable better real-time decision making. Successes include saving $650,000 / year in water loss control, safeguarding water quality, saving millions of dollars in energy management and asset management. Immediate opportunities exist to integrate the research being done in academia with these ODMS solutions in the field and to leverage these successes to utilities around the world.
Resumo:
Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed
Resumo:
The transport of fluids through pipes is used in the oil industry, being the pipelines an important link in the logistics flow of fluids. However, the pipelines suffer deterioration in their walls caused by several factors which may cause loss of fluids to the environment, justifying the investment in techniques and methods of leak detection to minimize fluid loss and environmental damage. This work presents the development of a supervisory module in order to inform to the operator the leakage in the pipeline monitored in the shortest time possible, in order that the operator log procedure that entails the end of the leak. This module is a component of a system designed to detect leaks in oil pipelines using sonic technology, wavelets and neural networks. The plant used in the development and testing of the module presented here was the system of tanks of LAMP, and its LAN, as monitoring network. The proposal consists of, basically, two stages. Initially, assess the performance of the communication infrastructure of the supervisory module. Later, simulate leaks so that the DSP sends information to the supervisory performs the calculation of the location of leaks and indicate to which sensor the leak is closer, and using the system of tanks of LAMP, capture the pressure in the pipeline monitored by piezoresistive sensors, this information being processed by the DSP and sent to the supervisory to be presented to the user in real time
Resumo:
The production of heavy oil fields, typical in the Northeastern region, is commonly stimulated by steam injection. High bottom hole temperatures are responsible not only for the development of deleterious stresses of the cement sheath but also for cement strength retrogression. To overcome this unfavorable scenario, polymeric admixtures can be added to cement slurries to improve its fracture energy and silica flour to prevent strength retrogression. Therefore, the objective of the present study was to investigate the effect of the addition of different concentrations of polyurethane (5-25%) to cement slurries containing 40% BWOC silica flour. The resulting slurries were characterized using standard API (American Petroleum Institute) laboratory tests. In addition to them, the mechanical properties of the slurries, including elastic modulus and microhardness were also evaluated. The results revealed that density, free water and stability of the composite cement/silica/polyurethane slurries were within acceptable limits. The rheological behavior of the slurries, including plastic viscosity, yield strength and gel strength increased with the addition of 10% BWOC polyurethane. The presence of polyurethane reduced the fluid loss of the slurries as well as their elastic modulus. Composite slurries also depicted longer setting times due to the presence of the polymer. As expected, both the mechanical strength and microhardness of the slurries decreased with the addition of polyurethane. However, at high bottom hole temperatures, the strength of the slurries containing silica and polyurethane was far superior than that of plain cement slurries. In summary, the use of polyurethane combined with silica is an interesting solution to better adequate the mechanical behavior of cement slurries to heavy oil fields subjected to steam injection
Resumo:
An economical solution for cementing oil wells is the use of pre-prepared dry mixtures containing cement and additives. The mixtures may be formulated, prepared and transported to the well where is added water to be pumped.Using this method, becomes dispensable to prepare the cement mixes containing additives in the cementing operation, reducing the possibility of error. In this way, the aim of this work is to study formulations of cement slurries containing solid additives for primary cementing of oil wells onshore for typical depths of 400, 800 and 1,200 meters. The formulations are comprised of Special Class Portland cement, mineral additions and solids chemical additives.The formulated mixtures have density of 1.67 g / cm ³ (14.0 lb / gal). Their optimization were made through the analysis of the rheological parameters, fluid loss results, free water, thickening time, stability test and mechanical properties.The results showed that mixtures are in conformity the specifications for cementing oil wells onshore studied depths
Resumo:
Cementing operation is one of the most important stages in the oil well drilling processes and has main function to form hydraulic seal between the various permeable zones traversed by the well. However, several problems may occur with the cement sheath, either during primary cementing or during the well production period. Cements low resistance can cause fissures in the cement sheath and compromise the mechanical integrity of the annular, resulting in contamination of groundwater and producing zones. Several researches show that biomass ash, in particular, those generated by the sugarcane industry have pozzolanic activity and can be added in the composition of the cementing slurries in diverse applications, providing improvements in mechanical properties, revenue and cement durability. Due to the importance of a low cost additive that increases the mechanical properties in a well cementing operations, this study aimed to potentiate the use of sugarcane bagasse ash as pozzolanic material, evaluate the mechanisms of action of this one on cement pastes properties and apply this material in systems slurries aimed to cementing a well with 800 m depth and geothermal gradient of 1.7 °F/100 ft, as much primary cementing operations as squeeze. To do this, the ash beneficiation methods were realized through the processes of grinding, sifting and reburning (calcination) and then characterization by X-ray fluorescence, XRD, TG / DTG, specific surface area, particle size distribution by laser diffraction and mass specific. Moreover, the ash pozzolanic activity added to the cement at concentrations of 0%, 20% and 40% BWOC was evaluated by pozzolanic activity index with lime and with Portland cement. The evaluation of the pozzolanic activity by XRD, TG / DTG and compressive strength confirmed the ash reactivity and indicated that the addition of 20% in the composition of cement slurries produces improvement 34% in the mechanical properties of the slurry cured. Cement slurries properties evaluated by rheological measurements, fluid loss, free fluid, slurry sedimentation, thickening time and sonic strength (UCA) were satisfactory and showed the viability of using the sugarcane ash in cement slurries composition for well cementing
Resumo:
All around the world, naturally occurring hydrocarbon deposits, consisting of oil and gas contained within rocks called reservoir rocks , generally sandstone or carbonate exists. These deposits are in varying conditions of pressure and depth from a few hundred to several thousand meters. In general, shallow reservoirs have greater tendency to fracture, since they have low fracture gradient, ie fractures are formed even with relatively low hydrostatic columns of fluid. These low fracture gradient areas are particularly common in onshore areas, like the Rio Grande do Norte basin. During a well drilling, one of the most favorable phases for the occurrence of fractures is during cementing, since the cement slurry used can have greater densities than the maximum allowed by the rock structure. Furthermore, in areas which are already naturally fractured, the use of regular cement slurries causes fluid loss into the formation, which may give rise to failures cementations and formation damages. Commercially, there are alternatives to the development of lightweight cement slurries, but these fail either because of their enormous cost, or because the cement properties were not good enough for most general applications, being restricted to each transaction for which the cement paste was made, or both reasons. In this work a statistical design was made to determine the influence of three variables, defined as the calcium chloride concentration, vermiculite concentration and nanosilica concentration in the various properties of the cement. The use of vermiculite, a low density ore present in large amounts in northeastern Brazil, as extensor for cementing slurries, enabled the production of stable cements, with high water/cement ratio, excellent rheological properties and low densities, which were set at 12.5 lb / gal, despite the fact that lower densities could be achieved. It is also seen that the calcium chloride is very useful as gelling and thickening agent, and their use in combination with nanosilica has a great effect on gel strength of the cement. Hydrothermal Stability studies showed that the pastes were stable in these conditions, and mechanical resistance tests showed values of the order of up to 10 MPa
Resumo:
A hipovolemia é caracterizada por uma perda de fluido corpóreo, cursando com inadequado fluxo circulatório e consequentemente lesão tecidual. Neste trabalho, objetivou-se comparar a expansão volêmica resultante da administração de solução salina hipertônica (NaCl 7,5%), isolada ou em associação com hidroxietilamido 130/0,4 (HES 130/0,4), em gatas com hipovolemia induzida, sob anestesia geral inalatória com isofluorano. Foram utilizadas 12 gatas, sem raça definida, adultas, com massa corporal média de 3,07±0,56kg. Os animais foram anestesiados com isofluorano e, após a preparação cirúrgica, foram mantidos em 1CAM sob ventilação controlada. Após a estabilização do plano anestésico, foram avaliados os parâmetros basais. em ato contínuo, iniciou-se a fase de hipovolemia, por meio da retirada de 30ml kg-1 de sangue da artéria femoral. Após 60 minutos da estabilização do quadro de hipovolemia, foi realizada nova mensuração dos dados, alocando-se os animais aleatoriamente em dois grupos: GSH (grupo solução hipertônica, n=6), que receberam, na fase de expansão volêmica, NaCl 7,5% isolada, na dose de 4ml kg-1, e GSHC (grupo salina hipertônica associado ao coloide, n=6), que receberam NaCl 7,5%, na mesma dose citada, em associação com HES 130/0,4, na dose de 30ml kg-1. Após realização do tratamento, foram avaliados novamente os efeitos cardiovasculares e hemogasométricos por 120 minutos. As pressões arteriais média (PAM), sistólica (PAS) e diastólica (PAD) foram maiores logo após a expansão volêmica (T0) para o GSH. de T45 até T120, as PAM, PAS e PAD foram maiores para o GSHC, em comparação com o GSH. A pressão venosa central foi maior no GSHC até T60. Não foram observadas diferenças entre grupos para frequência cardíaca e respiratória, íons sódio e potássio, déficit de base, bicarbonato, saturação de oxigênio na hemoglobina, glicose, PaCO2, PaO2 e pH. Conclui-se que a administração de NaCl 7,5% isoladamente aumenta rapidamente a PAM, PAS e PAD em gatos com hipovolemia induzida, mantendo esse efeito por apenas 30 minutos, enquanto que a administração de hidroxietilamido 130/0,4 associado à NaCl 7,5% promove reestabelecimento mais tardio (após 30 minutos), porém mais duradouro (até 120 minutos) da PAM, PAS e PAD em gatas com hipovolemia induzida. A administração de HES 130/0,4 associada à NaCl 7,5% promove aumento acentuado da PVC por até 60 minutos após a administração.
Resumo:
We explored the role of angiotensin II and vasopressin in the maintenance of blood pressure during the nephrotic syndrome of adriamycin-induced nephropathy in rats. All 91 rats treated with adriamycin developed chronic renal failure with nephrotic syndrome, which was more pronounced in the normotensive rats than the 35% who became hypertensive. Angiotensin II blockade with DuP 753 produced a significantly greater hypotensive response in both the adriamycin-hypertensive (-16+/-3 mmHg) and adriamycin-normotensive (-14+/-5 mmHg) groups than the saline-treated controls (-5+/-1 mm Hg, P<.05). Vasopressin blockade with either a V1V2 inhibitor or a selective V-1 inhibitor produced a hypotensive response in adriamycin-hypertensive rats only (by -16+/-4 and -17+/-2 mm Hg, respectively, P<.01), although the nonselective vasopressin inhibitor produced similar fluid loss and body weight reduction in all three groups. The data suggest that in adriamycin-induced nephropathy with nephrotic syndrome, angiotensin II contributes to blood pressure maintenance in both hypertensive and normotensive animals, whereas the presser action of vasopressin contributes to elevated blood pressure in hypertensive animals only.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: avaliar as alterações cefalométricas em pacientes com perda bilateral do primeiro molar inferior permanente. MÉTODOS: foram analisadas 68 telerradiografias laterais de pacientes de consultórios particulares. A amostra foi dividida em dois grupos pareados quanto ao sexo e idade - 34 indivíduos sem perdas (grupo controle) e 34 com perda bilateral do primeiro molar inferior permanente (grupo com perda). Foram excluídos da amostra pacientes que haviam perdido outros dentes que não o primeiro molar inferior, casos de agenesia e pacientes com menos de 16 anos de idade. Buscou-se avaliar somente indivíduos que tivessem relatado a perda há pelo menos 5 anos. RESULTADOS: demonstraram que a perda bilateral do primeiro molar inferior permanente leva ao suave fechamento do ângulo GnSN (P=0,05), um giro anti-horário do plano oclusal (P=0,0001), uma suave diminuição da altura facial anteroinferior (P=0,05), uma acentuada inclinação lingual (P=0,04) e retrusão dos incisivos inferiores (P=0,03). Por outro lado, a perda bilateral do primeiro molar inferior permanente não foi capaz de influenciar a relação maxilomandibular no sentido anteroposterior (P=0,21), a quantidade de mento (P=0,45), a inclinação dos incisivos superiores (P=0,12) e a posição anteroposterior dos incisivos superiores (P=0,46). CONCLUSÃO: a perda bilateral dos primeiros molares inferiores é capaz de produzir alterações marcantes no posicionamento dos incisivos inferiores e no plano oclusal, além de uma suave redução vertical da face.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The aim of this study is to evaluate by histometric and immunohistochemistry analysis the effects of antimicrobial photodynamic therapy (aPDT) in alveolar prior to placement of mini-implants in animals with or without induced periodontal disease. Material and method: Thirty-two rats were used. Periodontal disease (PD) was induced by ligature in the lower left first molar. After 7 days of PD evolution, it was performed removal of the ligature and extraction of the left lower first molars in all animals. Thus, animals were divided into 2 groups (n=16) according to the treatments in the dental alveolus before immediate implant installation: MD (control) : mechanical debridement (MD), irrigation with 1 ml of saline solution followed by implant installation; aPDT- MD, irrigation with 1 ml of Toluidine Blue-O and low intensity laser (LLLT) and implant installation. Eight animals from each group were euthanized at 15 and 30 days after the installation of mini-implants. Specimens were processed for histologic, immunohistochemical and histometric analysis. The histometric data were processed for statistical analysis (Kruskall-Wallis and Dunn test; p <0.05). Result: In treatment analysis, results indicated that there was a greater BIC in implants installed in uncontaminated alveolus treated with a PDT ( p<0,05) and greater imuno-reactivity to OPG in bone issue treated with aPDT. Conclusion: The aPDT proved to be effective in bone loss control in no contaminated area and it has increased the bone loss and metabolic activity in alveolus irradiated prior to implant installation.
Resumo:
We explored the role of angiotensin II and vasopressin in the maintenance of blood pressure during the nephrotic syndrome of adriamycin-induced nephropathy in rats. All 91 rats treated with adriamycin developed chronic renal failure with nephrotic syndrome, which was more pronounced in the normotensive rats than the 35% who became hypertensive. Angiotensin II blockade with DuP 753 produced a significantly greater hypotensive response in both the adriamycin-hypertensive (-16 +/- 3 mm Hg) and adriamycin-normotensive (-14 +/- 5 mm Hg) groups than the saline-treated controls (-5 +/- 1 mm Hg, P < .05). Vasopressin blockade with either a V1V2 inhibitor or a selective V1 inhibitor produced a hypotensive response in adriamycin-hypertensive rats only (by -16 +/- 4 and -17 +/- 2 mm Hg, respectively, P < .01), although the nonselective vasopressin inhibitor produced similar fluid loss and body weight reduction in all three groups. The data suggest that in adriamycin-induced nephropathy with nephrotic syndrome, angiotensin II contributes to blood pressure maintenance in both hypertensive and normotensive animals, whereas the pressor action of vasopressin contributes to elevated blood pressure in hypertensive animals only.
Resumo:
Spiders, as all other arthropods, have an open circulatory system, and their body fluid, the hemolymph, freely moves between lymphatic vessels and the body cavities (see Wirkner and Huckstorf 2013). The hemolymph can be considered as a multifunctional organ, central for locomotion (Kropf 2013), respiration (Burmester 2013) and nutrition, and it amounts to approximately 20 % of a spider’s body weight. Any injury includes not only immediate hemolymph loss but also pathogen attacks and subsequent infections. Therefore spiders have to react to injuries in a combined manner to stop fluid loss and to defend against microbial invaders. This is achieved by an innate immune system which involves several host defence systems such as hemolymph coagulation and the production of a variety of defensive substances (Fukuzawa et al.2008). In spiders, the immune system is localised in hemocytes which are derived from the myocardium cells of the heart wall where they are produced as prohemocytes and from where they are released as different cell types into the hemolymph (Seitz 1972). They contribute to the defence against pathogens by phagocytosis, nodulation and encapsulation of invaders. The humoral response includes mechanisms which induce melanin production to destroy pathogens, a clotting cascade to stop hemolymph loss and the constitutive production of several types of antimicrobial peptides, which are stored in hemocyte granules and released into the hemolymph (Fukuzawa et al.2008) (Fig.7.1). The immune system of spiders is an innate immune system. It is hemolymph-based and characterised by a broad but not very particular specificity. Its advantage is a fast response within minutes to a few hours. This is in contrast to the adaptive immune system of vertebrates which can react to very specific pathogens, thus resulting in much more specific responses. Moreover, it creates an immunological memory during the lifetime of the species. The disadvantage is that it needs more time to react with antibody production, usually many hours to a few days, and needs to be built up during early ontogenesis.