985 resultados para Fit-body
Resumo:
The principal theme of this thesis is the identification of additional factors affecting, and consequently to better allow, the prediction of soft contact lens fit. Various models have been put forward in an attempt to predict the parameters that influence soft contact lens fit dynamics; however, the factors that influence variation in soft lens fit are still not fully understood. The investigations in this body of work involved the use of a variety of different imaging techniques to both quantify the anterior ocular topography and assess lens fit. The use of Anterior-Segment Optical Coherence Tomography (AS-OCT) allowed for a more complete characterisation of the cornea and corneoscleral profile (CSP) than either conventional keratometry or videokeratoscopy alone, and for the collection of normative data relating to the CSP for a substantial sample size. The scleral face was identified as being rotationally asymmetric, the mean corneoscleral junction (CSJ) angle being sharpest nasally and becoming progressively flatter at the temporal, inferior and superior limbal junctions. Additionally, 77% of all CSJ angles were within ±50 of 1800, demonstrating an almost tangential extension of the cornea to form the paralimbal sclera. Use of AS-OCT allowed for a more robust determination of corneal diameter than that of white-to-white (WTW) measurement, which is highly variable and dependent on changes in peripheral corneal transparency. Significant differences in ocular topography were found between different ethnicities and sexes, most notably for corneal diameter and corneal sagittal height variables. Lens tightness was found to be significantly correlated with the difference between horizontal CSJ angles (r =+0.40, P =0.0086). Modelling of the CSP data gained allowed for prediction of up to 24% of the variance in contact lens fit; however, it was likely that stronger associations and an increase in the modelled prediction of variance in fit may have occurred had an objective method of lens fit assessment have been made. A subsequent investigation to determine the validity and repeatability of objective contact lens fit assessment using digital video capture showed no significant benefit over subjective evaluation. The technique, however, was employed in the ensuing investigation to show significant changes in lens fit between 8 hours (the longest duration of wear previously examined) and 16 hours, demonstrating that wearing time is an additional factor driving lens fit dynamics. The modelling of data from enhanced videokeratoscopy composite maps alone allowed for up to 77% of the variance in soft contact lens fit, and up to almost 90% to be predicted when used in conjunction with OCT. The investigations provided further insight into the ocular topography and factors affecting soft contact lens fit.
Resumo:
Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.