932 resultados para Fish farming - Nutrition
Resumo:
Performance and economic indicators of a large scale fish farm that produces round fish, located in Mato Grosso State, Brazil, were evaluated. The 130.8 ha-water surface area was distributed in 30 ponds. Average total production costs and the following economic indicators were calculated: gross income (GI), gross margin (GM), gross margin index (GMI), profitability index (PI) and profit (P) for the farm as a whole and for ten ponds individually. Production performance indicators were also obtained, such as: production cycle (PC), apparent feed conversion (FC), average biomass storage (ABS), survival index (SI) and final average weight (FAW). The average costs to produce an average 2.971 kg.ha-1 per year were: R$ 2.43, R$ 0.72 and R$ 3.15 as average variable, fixed and total costs, respectively. Gross margin and profit per year per hectare of water surface were R$ 2,316.91 and R$ 180.98, respectively. The individual evaluation of the ponds showed that the best pond performance was obtained for PI 38%, FC 1.7, ABS 0.980 kg.m-2, TS 56%, FAW 1.873 kg with PC of 12.3 months. The worst PI was obtained for the pond that displayed losses of 138%, FC 2.6, ABS 0.110 kg.m-2, SI 16% and FAW 1.811 kg. However, large scale production of round-fish in farms is economically feasible. The studied farm displays favorable conditions to improve performance and economic indicators, but it is necessary to reproduce the breeding techniques and performance indicators achieved in few ponds to the entire farm.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This manual was written as part of the Integrated Research in Development for Improved Livelihoods Programme in Northern Province, Zambia (IRDLP) and is primarily intended for extension agents to use with smallholder farmers engaged in semi-intensive fish farming in Northern Zambia. The IRDLP is an Irish Aid-funded project implemented by WorldFish, Harvest Plus and the Center for International Forestry Research (CIFOR). The goal of the IRDLP is to help improve the livelihoods, health status, and food and nutrition security of resource-poor households in the Mbala and Luwingu districts in Northern Zambia, especially women and vulnerable groups. This is achieved through generating and providing evidence-based information, scientific technologies and livelihood solutions to trigger community and farmer innovations for positive change. This manual provides information on how smallholder fish farmers can improve fish production in Northern Zambia, particularly in the Luwingu and Mbala districts, through integrated farming practices.
Resumo:
Problems in India regarding the management of various coastal saline soil and waterlogged environments are discussed in detail, considering in particular the potential application of mixed fish farming systems. Various operational and cost requirements of such systems are examined.
Resumo:
The evolutionary process of converting low-lying paddy fields into fish farms and its impact on agrarian communities in some selected areas of Mymensingh district were studied. This study was conducted through participatory rural appraisal (PRA) covering 12 villages from each of selected upazillas viz. Fulpur and Haluaghat of Mymensing [sic] district. A total of 12 PRA sessions were conducted where 90 farmers participated during 29 July to 26 August 2004. It is seen that the use of low-lying paddy fields was mostly confined to Broadcast Aman (B. Aman) rice production until 1960s. With the introduction of modern rice farming technology, the farmers started to produce Boro rice in Rabi season and B. Aman rice in Kharif season. With the passage of time, aquaculture technologies have been evolved and the farmers realized that fish farming is more profitable than rice cultivation, and then they started to utilize their paddy fields for alternate rice-fish farming and rice-cum-fish farming. Now a days, aquaculture based crop production system is in practice in more than 25% of the low-lying paddy fields. Conversion of rice fields in to fish ponds has brought up a change in the livelihood patterns of the rural farmers. The areas where the farmers involved themselves in the new production systems were fingerling collection, transportation and marketing of fry and fingerlings. During 1960s to 1970s, a few people used to culture fish in the permanent ponds for their own consumption, the species produced were rohu, catla, mrigal, ghainna, long whiskered catfish, freshwater shark (boal), snake head (shol) etc. Small fishes like climbing perch, stinging catfish, walking catfish, barb, minnows etc. were available in the rice fields during monsoon season. In 1980s to mid 1990s, some rice fields were converted into fish ponds and the people started to produce fish for commercial purposes. When rice-fish farming became profitable, a large number of people started converting their rice fields in to rice-fish culture ponds. Culture of some exotic fishes like silver carp, tilapia, grass carp, silver barb etc. also started in the paddy fields. Higher income from fish farming contributed positively in improving the housing, sanitation and education system in the study areas. It is seen that the medium and medium high lands were only used for alternate rice fish farming. The net income was high in any fish based cropping system that motivated the farmers to introduce fish based cropping system in the low-lying inland areas. As a result, the regional as well as communal income disparities occurred. However, the extraction of ground water became common during the dry period as the water was used for both rice and fish farming. Mass conversion of paddy fields into rice-fish culture ponds caused water logging in the study areas. In most cases, the participated farmers mentioned that they could be easily benefited by producing fish with T. Aman or only fish during the monsoon season. They agreed that this was an impressive technology to them and they could generate employment opportunities throughout the year. Finally, the social, economic and technical problems which are acting as constraints to rapid expansion of fish production system were reported from the interviewee.
Resumo:
Farming freshwater prawns with fish in rice fields is widespread in coastal regions of southwest Bangladesh because of favourable resources and ecological conditions. This article provides an overview of an ecosystem-based approach to integrated prawn-fish-rice farming in southwest Bangladesh. The practice of prawn and fish farming in rice fields is a form of integrated aquaculture-agriculture, which provides a wide range of social, economic and environmental benefits. Integrated prawn-fish-rice farming plays an important role in the economy of Bangladesh, earning foreign exchange and increasing food production. However, this unique farming system in coastal Bangladesh is particularly vulnerable to climatechange. We suggest that community-based adaptation strategies must be developed to cope with the challenges. We propose that integrated prawn-fish-rice farming could be relocated from the coastal region to less vulnerable upland areas, but caution that this will require appropriate adaptation strategies and an enabling institutional environment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fish are an important part of Bangladeshi culture and diet. Bangladesh ranks among the top five freshwater fish producers in the world. Fish are abundant in the thousands of rivers, ponds, lakes and seasonal floodplains across the country. They are a major source of protein for people living near these water bodies. In Bangladesh, many households depend on fish farming for their livelihood. By growing fish in homestead ponds, households have a consistent supply of nutritious fish and can sell the surplus for an income. The USAID-funded Cereal Systems Initiative for South Asia in Bangladesh (CSISA-BD) aimed to increase the income of farming households through increased productivity of aquaculture systems. Key activities of the project included developing and disseminating appropriate improved agricultural technology and quality fish seeds to improve livelihoods, food security and nutrition.
Adapting integrated agriculture aquaculture for HIV and AIDS-affected households: the case of Malawi
Resumo:
The WorldFish Center in conjunction with World Vision Malawi carried out a project to improve income and nutrition status of households affected by HIV and AIDS with funding from the World Bank. The project was implemented in Southern Malawi particularly in the West of Zomba District from July 2005 to June 2006. Through participatory approaches, the project identified constraints that limit HIV and AIDS affected households’ realisation of the benefits from fish farming and adapted technologies and practices for the affected beneficiaries to boost fish production and utilization. Specifically, the project sought (1) to identify the constraints that limit HIV and AIDS affected households to realise the benefits from fish farming and based on the constraints, (2) to adapt technologies and practices for use by the affected beneficiaries to boost fish production and utilization. (PDF cotains 17 pages)
Resumo:
Fish feeding accounts for a substantial amount in the variable expenditure of a fish farming enterprises. There is a need to examine closely the potentials and advantages of locally available agro-industrial by-products, as possible substitutes for the conventional feedstuffs which are dwindling in supply, and escalating in their cost. A wide range of by products from plant, animal and industrial processes have been studied and posses nutrient composition which can be exploited as dietary ingredients for warm water species as the Tilapia and Clarias sp. Such useful by-products include poultry feathers, rice bran, soybean hulls and cocoa husks which are discarded as wastes. However, some processing treatments might be required to alleviate the toxic effects of possible anti-nutritional factors in the by-products, for the achievement of optimum benefit
Resumo:
Studies in fish feed technology revealed that there is a potential for big time investment into fish feed production and marketing in view of the growing awareness of fish farming in Nigeria. Intensification of aquaculture is one of the primary methods of food (finfish) production which requires technical knowledge and expertise in the formulation and manufacture of adequate feeds for the cultured species. Studies also revealed that all sort of food items were used by fish farmers ranging from animal dung, groundnut cake etc, to culture fish to table size because of non-availability of rightly prepared feeds. Inadequate knowledge of detailed requirements of tropical cultured species was found to pose a hindrance to formulation despite the fact that a lot has been accumulated in terms of biochemical and nutritive values of food sources in Nigeria. The investigation further revealed the challenges posed to researchers in aquaculture, fish nutritionists and fisheries biologists among others to elucidate the complete requirements of local fish species in terms of their protein, lipid and carbohydrate requirements such that their patents could be made available to companies like PFIZER, IBRU etc, and individuals alike to make commercialization of fish feeds a reality
Resumo:
Integrated agriculture-cum-fish farming has been practised profitably for ages in the Chinese small-scale farming system. There is a great potential for this system by utilizing the vast Nigerian flood plains (approx. 515,000 ha). Dogongari Bay in Lake Kainji Basin was identified as a suitable site for this system after some extensive fish culture trials. Polyculture of Clarias spp., Heterotis niloticus and Tilapia was proposed for integration with layers in the poultry house, 2-ha upland rain-fed rice farming and indirect cattle rearing in the 5-ha enclosure site. Cost benefit analysis showed that the system will consistently record profit as from the second year of operation. Various complex factors were identified to affect profitability of this mixed farming system. Concerted research approach is needed to fully understand the interrelationships of the various components of this integrated system. Generous funding of research activities is very crucial in this situation
Resumo:
Cost projections for the establishment of a fish farm in Nigeria was conducted. It is shown that fish farming should be a lucrative venture. However, many private fish farms are not making the desired profits because of a variety of problems. Besides managerial incompetence, availability of fingerlings for stocking in the ponds is shown to be a serious handicap to the success of investments in a fish farm. It is suggested that where the funds are available, each farm should be equipped with facilities for raising its needs of fingerlings. Since useful capital would be involved and knowledgeable experts to run the hatcheries are few, it is recommended that fish farms within a state or adjacent states should combine to establish viable cooperative hatcheries
Resumo:
The study examines the integration of cultural, economic and environmental requirements for fish production in Borno State, Nigeria. A reconnaissance survey was conducted transferring some selected Local Government Areas. 60 questionnaires were administered in the six Local Governments representing Southern Borno State with Biu and Shani, central Borno with Konduga & Jere and Northern Borno with Gubia and Kukawa respectively. There is no cultural constraint to fish production but about 63% prefers to invest in other farming activities than in fish farming. 33% are not aware that fish can be cultured apart from getting it from the wild. 35% have the impression that fish farming ventures can be handled by government only. The economic earnings for fish production are high especially in some parts of Northern Borno, but the Local market potentials throughout the state are great. Nigeria has suitable soil for ponds apart from few locations at the central and Northern Borno that are made by sandy soil. Numerous perennial and seasonal rivers, streams, lakes, pools and flood plains adequate for fish culture especially in Southern Borno exist. The mean annual rainfall can result in some water storage in ponds. In areas where the annual precipitation is less than 550mm, exist few flow boreholes with potentials for fish production. The temperature regime may support growth and survival of fish even during the hottest months of the year (March, April and May). With the understanding and manipulation of these requirements, fish production in Nigeria can be greatly enhanced
Resumo:
Fish farming practices in the Lake Kainji Area of Nigeria are categorized under seven main cultural facilities, namely, earthen ponds/reservoirs, indoor/outdoor concrete tanks, plastic tanks, floating cages/hapas, aquaria, sewage and feral conditions. The presence of Bacteria isolates associated with diseased fish conditions varied significantly (P<0.05) with different cultural facilities. The highest bacteria isolates and bacterial disease incidence, 33% and 46% respectively, was associated with diseased fish in the indoor/outdoor concrete tanks. The least incidence of bacteria isolates (3.5%) and blue bacterial disease (3%) was associated with diseased fish in the aquaria and feral conditions. Nine Gram-negative and two Gram-positive bacteria genera were isolated during this investigation. Pseudomonas spp. (23.6%) and Staphylococcus spp. (14.3%), were the predominant Gram-negative and Gram-positive bacteria genera in the different cultural facilities, respectively. This paper highlights the relevance of occurrence and distribution of bacteria isolates associated with diseased fish to bacterial fish diseases under different cultural facilities