997 resultados para Financial econometrics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vector error-correction models (VECMs) have become increasingly important in their application to financial markets. Standard full-order VECM models assume non-zero entries in all their coefficient matrices. However, applications of VECM models to financial market data have revealed that zero entries are often a necessary part of efficient modelling. In such cases, the use of full-order VECM models may lead to incorrect inferences. Specifically, if indirect causality or Granger non-causality exists among the variables, the use of over-parameterised full-order VECM models may weaken the power of statistical inference. In this paper, it is argued that the zero–non-zero (ZNZ) patterned VECM is a more straightforward and effective means of testing for both indirect causality and Granger non-causality. For a ZNZ patterned VECM framework for time series of integrated order two, we provide a new algorithm to select cointegrating and loading vectors that can contain zero entries. Two case studies are used to demonstrate the usefulness of the algorithm in tests of purchasing power parity and a three-variable system involving the stock market.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we develop an evolutionary kernel-based time update algorithm to recursively estimate subset discrete lag models (including fullorder models) with a forgetting factor and a constant term, using the exactwindowed case. The algorithm applies to causality detection when the true relationship occurs with a continuous or a random delay. We then demonstrate the use of the proposed evolutionary algorithm to study the monthly mutual fund data, which come from the 'CRSP Survivor-bias free US Mutual Fund Database'. The results show that the NAV is an influential player on the international stage of global bond and stock markets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates risk and return in the banking sector in three Asian markets of Taiwan, China and Hong Kong. The study focuses on the risk-return relation in a conditional factor GARCH-M framework that controls for time-series effects. The factor approach is adopted to incorporate intra-industry contagion and an analysis of spillovers between large banks and small banks. Finally, the study provides evidence on these relations before and after the Asian financial crisis of 1997. The results are generally consistent across the markets and with expectations.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation contains four essays that all share a common purpose: developing new methodologies to exploit the potential of high-frequency data for the measurement, modeling and forecasting of financial assets volatility and correlations. The first two chapters provide useful tools for univariate applications while the last two chapters develop multivariate methodologies. In chapter 1, we introduce a new class of univariate volatility models named FloGARCH models. FloGARCH models provide a parsimonious joint model for low frequency returns and realized measures, and are sufficiently flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the performances of the models in a realistic numerical study and on the basis of a data set composed of 65 equities. Using more than 10 years of high-frequency transactions, we document significant statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and forecasting accuracy compared to classical and Realized GARCH models. In chapter 2, using 12 years of high-frequency transactions for 55 U.S. stocks, we argue that combining low-frequency exogenous economic indicators with high-frequency financial data improves the ability of conditionally heteroskedastic models to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-period Value-at-Risk. Using a refined version of the Realized LGARCH model allowing for time-varying intercept and implemented with realized kernels, we document that nominal corporate profits and term spreads have strong long-run predictive ability and generate accurate risk measures forecasts over long-horizon. The results are based on several loss functions and tests, including the Model Confidence Set. Chapter 3 is a joint work with David Veredas. We study the class of disentangled realized estimators for the integrated covariance matrix of Brownian semimartingales with finite activity jumps. These estimators separate correlations and volatilities. We analyze different combinations of quantile- and median-based realized volatilities, and four estimators of realized correlations with three synchronization schemes. Their finite sample properties are studied under four data generating processes, in presence, or not, of microstructure noise, and under synchronous and asynchronous trading. The main finding is that the pre-averaged version of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated covariances on the basis of noisy and asynchronous prices. Along these lines, a minimum variance portfolio application shows the superiority of this disentangled realized estimator in terms of numerous performance metrics. Chapter 4 is co-authored with Niels S. Hansen, Asger Lunde and Kasper V. Olesen, all affiliated with CREATES at Aarhus University. We propose to use the Realized Beta GARCH model to exploit the potential of high-frequency data in commodity markets. The model produces high quality forecasts of pairwise correlations between commodities which can be used to construct a composite covariance matrix. We evaluate the quality of this matrix in a portfolio context and compare it to models used in the industry. We demonstrate significant economic gains in a realistic setting including short selling constraints and transaction costs.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses the presence of financial constraint in the investment decisions of 367 Brazilian firms from 1997 to 2004, using a Bayesian econometric model with group-varying parameters. The motivation for this paper is the use of clustering techniques to group firms in a totally endogenous form. In order to classify the firms we used a hybrid clustering method, that is, hierarchical and non-hierarchical clustering techniques jointly. To estimate the parameters a Bayesian approach was considered. Prior distributions were assumed for the parameters, classifying the model in random or fixed effects. Ordinate predictive density criterion was used to select the model providing a better prediction. We tested thirty models and the better prediction considers the presence of 2 groups in the sample, assuming the fixed effect model with a Student t distribution with 20 degrees of freedom for the error. The results indicate robustness in the identification of financial constraint when the firms are classified by the clustering techniques. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of mathematical methods and computer algorithms in the analysis of economic and financial data series aims to give empirical descriptions of the hidden relations between many complex or unknown variables and systems. This strategy overcomes the requirement for building models based on a set of ‘fundamental laws’, which is the paradigm for studying phenomena usual in physics and engineering. In spite of this shortcut, the fact is that financial series demonstrate to be hard to tackle, involving complex memory effects and a apparently chaotic behaviour. Several measures for describing these objects were adopted by market agents, but, due to their simplicity, they are not capable to cope with the diversity and complexity embedded in the data. Therefore, it is important to propose new measures that, on one hand, are highly interpretable by standard personal but, on the other hand, are capable of capturing a significant part of the dynamical effects.