783 resultados para Fieldwork Learning Framework
Resumo:
An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.
Resumo:
Virtual and remote laboratories(VRLs) are e-learning resources which enhance the accessibility of experimental setups providing a distance teaching framework which meets the student's hands-on learning needs. In addition, online collaborative communication represents a practical and a constructivist method to transmit the knowledge and experience from the teacher to students, overcoming physical distance and isolation. Thus, the integration of learning environments in the form of VRLs inside collaborative learning spaces is strongly desired. Considering these facts, the authors of this document present an original approach which enables user to share practical experiences while they work collaboratively through the Internet. This practical experimentation is based on VRLs, which have been integrated inside a synchronous collaborative e-learning framework. This article describes the main features of this system and its successful application for science and engineering subjects.
Resumo:
This research examines and explains the links between safety culture and communication. Safety culture is a concept that in recent years has gained prominence but there has been little applied research conducted to investigate the meaning of the concept in 'real life' settings. This research focused on a Train Operating Company undergoing change in a move towards privatisation. These changes were evident in the management of safety, the organisation of the industry and internally in their management. The Train Operating Company's management took steps to improve their safety culture and communications through the development of a cascade communication structure. The research framework employed a qualitative methodology in order to investigate the effect of the new system on safety culture. Findings of the research were that communications in the organisation failed to be effective for a number of reasons, including both cultural and logistical problems. The cultural problems related to a lack of trust in the organisation by the management and the workforce, the perception of communications as management propaganda, and asyntonic communications between those involved, whilst logistical problems related to the inherent difficulties of communicating over a geographically distributed network. An organisational learning framework was used to explain the results. It is postulated that one of the principal reasons why change, either to the safety culture or to communications, did not occur was because of the organisation's inability to learn. The research has also shown the crucial importance of trust between the members of the organisation, as this was one of the fundamental reasons why the safety culture did not change, and why safety management systems were not fully implemented. This is consistent with the notion of mutual trust in the HSC (1993) definition of safety culture. This research has highlighted its relevance to safety culture and its importance for organisational change.
Resumo:
In eleven short chapters faculty, academic advising staff and student union representatives discuss aspects of Memorial’s First Year Success Program (piloted as a Teaching Learning Framework initiative 2012-2017). Teaching approaches, curriculum content and policy rationales are covered in a broad view of how and why students identified as least likely to succeed at university can be academically supported. Contributors identify the singular importance of the community that First Year Success provided them and its student participants.
Resumo:
To provide biological insights into transcriptional regulation, a couple of groups have recently presented models relating the promoter DNA-bound transcription factors (TFs) to downstream gene’s mean transcript level or transcript production rates over time. However, transcript production is dynamic in response to changes of TF concentrations over time. Also, TFs are not the only factors binding to promoters; other DNA binding factors (DBFs) bind as well, especially nucleosomes, resulting in competition between DBFs for binding at same genomic location. Additionally, not only TFs, but also some other elements regulate transcription. Within core promoter, various regulatory elements influence RNAPII recruitment, PIC formation, RNAPII searching for TSS, and RNAPII initiating transcription. Moreover, it is proposed that downstream from TSS, nucleosomes resist RNAPII elongation.
Here, we provide a machine learning framework to predict transcript production rates from DNA sequences. We applied this framework in the S. cerevisiae yeast for two scenarios: a) to predict the dynamic transcript production rate during the cell cycle for native promoters; b) to predict the mean transcript production rate over time for synthetic promoters. As far as we know, our framework is the first successful attempt to have a model that can predict dynamic transcript production rates from DNA sequences only: with cell cycle data set, we got Pearson correlation coefficient Cp = 0.751 and coefficient of determination r2 = 0.564 on test set for predicting dynamic transcript production rate over time. Also, for DREAM6 Gene Promoter Expression Prediction challenge, our fitted model outperformed all participant teams, best of all teams, and a model combining best team’s k-mer based sequence features and another paper’s biologically mechanistic features, in terms of all scoring metrics.
Moreover, our framework shows its capability of identifying generalizable fea- tures by interpreting the highly predictive models, and thereby provide support for associated hypothesized mechanisms about transcriptional regulation. With the learned sparse linear models, we got results supporting the following biological insights: a) TFs govern the probability of RNAPII recruitment and initiation possibly through interactions with PIC components and transcription cofactors; b) the core promoter amplifies the transcript production probably by influencing PIC formation, RNAPII recruitment, DNA melting, RNAPII searching for and selecting TSS, releasing RNAPII from general transcription factors, and thereby initiation; c) there is strong transcriptional synergy between TFs and core promoter elements; d) the regulatory elements within core promoter region are more than TATA box and nucleosome free region, suggesting the existence of still unidentified TAF-dependent and cofactor-dependent core promoter elements in yeast S. cerevisiae; e) nucleosome occupancy is helpful for representing +1 and -1 nucleosomes’ regulatory roles on transcription.
Resumo:
Abstract: This study was designed to validate a constructivist learning framework, herein referred to as Accessible Immersion Metrics (AIM), for second language acquisition (SLA) as well as to compare two delivery methods of the same framework. The AIM framework was originally developed in 2009 and is proposed as a “How to” guide for the application of constructivist learning principles to the second language classroom. Piloted in 2010 at Champlain College St-Lambert, the AIM model allows for language learning to occur, free of a fixed schedule, to be socially constructive through the use of task-based assessments and relevant to the learner’s life experience by focusing on the students’ needs rather than on course content.||Résumé : Cette étude a été principalement conçu pour valider un cadre d'apprentissage constructiviste, ci-après dénommé Accessible Immersion Metrics - AIM, pour l'acquisition d'une langue seconde - SLA. Le cadre de l'AIM est proposé comme un mode d'emploi pour l'application des principes constructivistes à l'apprentissage d’une langue seconde. Créé en 2009 par l'auteur, et piloté en 2010 au Collège Champlain St-Lambert, le modèle de l'AIM permet l'apprentissage des langues à se produire, sans horaire fixe et socialement constructive grâce à l'utilisation des évaluations alignées basées sur des tâches pertinentes à l'expérience de vie de l'étudiant en se concentrant sur les besoins des élèves plutôt que sur le contenu des cours.
Resumo:
Finding rare events in multidimensional data is an important detection problem that has applications in many fields, such as risk estimation in insurance industry, finance, flood prediction, medical diagnosis, quality assurance, security, or safety in transportation. The occurrence of such anomalies is so infrequent that there is usually not enough training data to learn an accurate statistical model of the anomaly class. In some cases, such events may have never been observed, so the only information that is available is a set of normal samples and an assumed pairwise similarity function. Such metric may only be known up to a certain number of unspecified parameters, which would either need to be learned from training data, or fixed by a domain expert. Sometimes, the anomalous condition may be formulated algebraically, such as a measure exceeding a predefined threshold, but nuisance variables may complicate the estimation of such a measure. Change detection methods used in time series analysis are not easily extendable to the multidimensional case, where discontinuities are not localized to a single point. On the other hand, in higher dimensions, data exhibits more complex interdependencies, and there is redundancy that could be exploited to adaptively model the normal data. In the first part of this dissertation, we review the theoretical framework for anomaly detection in images and previous anomaly detection work done in the context of crack detection and detection of anomalous components in railway tracks. In the second part, we propose new anomaly detection algorithms. The fact that curvilinear discontinuities in images are sparse with respect to the frame of shearlets, allows us to pose this anomaly detection problem as basis pursuit optimization. Therefore, we pose the problem of detecting curvilinear anomalies in noisy textured images as a blind source separation problem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it. Taking advantage of the parallel nature of this algorithm, we describe how this method can be accelerated using graphical processing units (GPU). Then, we propose a new method for finding defective components on railway tracks using cameras mounted on a train. We describe how to extract features and use a combination of classifiers to solve this problem. Then, we scale anomaly detection to bigger datasets with complex interdependencies. We show that the anomaly detection problem naturally fits in the multitask learning framework. The first task consists of learning a compact representation of the good samples, while the second task consists of learning the anomaly detector. Using deep convolutional neural networks, we show that it is possible to train a deep model with a limited number of anomalous examples. In sequential detection problems, the presence of time-variant nuisance parameters affect the detection performance. In the last part of this dissertation, we present a method for adaptively estimating the threshold of sequential detectors using Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results obtained are provided, followed by a discussion of possible future work.
Resumo:
Event extraction from texts aims to detect structured information such as what has happened, to whom, where and when. Event extraction and visualization are typically considered as two different tasks. In this paper, we propose a novel approach based on probabilistic modelling to jointly extract and visualize events from tweets where both tasks benefit from each other. We model each event as a joint distribution over named entities, a date, a location and event-related keywords. Moreover, both tweets and event instances are associated with coordinates in the visualization space. The manifold assumption that the intrinsic geometry of tweets is a low-rank, non-linear manifold within the high-dimensional space is incorporated into the learning framework using a regularization. Experimental results show that the proposed approach can effectively deal with both event extraction and visualization and performs remarkably better than both the state-of-the-art event extraction method and a pipeline approach for event extraction and visualization.
Resumo:
Recent technological advancements have played a key role in seamlessly integrating cloud, edge, and Internet of Things (IoT) technologies, giving rise to the Cloud-to-Thing Continuum paradigm. This cloud model connects many heterogeneous resources that generate a large amount of data and collaborate to deliver next-generation services. While it has the potential to reshape several application domains, the number of connected entities remarkably broadens the security attack surface. One of the main problems is the lack of security measures to adapt to the dynamic and evolving conditions of the Cloud-To-Thing Continuum. To address this challenge, this dissertation proposes novel adaptable security mechanisms. Adaptable security is the capability of security controls, systems, and protocols to dynamically adjust to changing conditions and scenarios. However, since the design and development of novel security mechanisms can be explored from different perspectives and levels, we place our attention on threat modeling and access control. The contributions of the thesis can be summarized as follows. First, we introduce a model-based methodology that secures the design of edge and cyber-physical systems. This solution identifies threats, security controls, and moving target defense techniques based on system features. Then, we focus on access control management. Since access control policies are subject to modifications, we evaluate how they can be efficiently shared among distributed areas, highlighting the effectiveness of distributed ledger technologies. Furthermore, we propose a risk-based authorization middleware, adjusting permissions based on real-time data, and a federated learning framework that enhances trustworthiness by weighting each client's contributions according to the quality of their partial models. Finally, since authorization revocation is another critical concern, we present an efficient revocation scheme for verifiable credentials in IoT networks, featuring decentralization, demanding minimum storage and computing capabilities. All the mechanisms have been evaluated in different conditions, proving their adaptability to the Cloud-to-Thing Continuum landscape.
Resumo:
In this paper I explore the Indigenous Australian women's performance classroom (hereafter ANTH2120) as a dialectic and discursive space where the location of possibility is opened for female Indigenous performers to enter into a dialogue from and between both non-Indigenous and Indigenous voices. The work of Bakhtin on dialogue serves as a useful standpoint for understanding the multiple speaking positions and texts in the ANTH2120 context. Bakhtin emphasizes performance, history, actuality and the openness of dialogue to provide an important framework for analysing multiple speaking positions and ways of making meaning through dialogue between shifting and differing subjectivities. I begin by briefly critiquing Bakhtin's "dialogic imagination" and consider the application and usefulness of concepts such as dialogism, heteroglossia and the utterance to understanding the ANTH2120 classroom as a polyphonic and discursive space. I then turn to an analysis of dialogue in the ANTH2120 classroom and primarily situate my gaze on an examination of the interactions that took place between the voices of myself as family/teacher/student and senior Yanyuwa women from the r e m o t e N o r t h e r n T e r r i t o r y A b o r i g i n a l c o m m u n i t y o f B o r r o l o o l a as family/performers/teachers. The 2000 and 2001 Yanyuwa women's performance workshops will be used as examples of the way power is constantly shifting in this dialogue to allow particular voices to speak with authority, and for others to remain silent as roles and relationships between myself and the Yanyuwa women change. Conclusions will be drawn regarding how my subject positions and white race privilege affect who speaks, who listens and on whose terms, and further, the efficacy of this pedagogical platform for opening up the location of possibility for Indigenous Australian women to play a powerful part in the construction of knowledges about women's performance traditions.
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
Worldwide competitiveness poses enormous challenges on managers, demanding a continuous quest to increase rationality in the use of resources. As a management philosophy, Lean Manufacturing focuses on the elimination of activities that do not create any type of value and therefore are considered waste. For companies to successfully implement the Lean Manufacturing philosophy it is crucial that the human resources of the organization have the necessary training, for which proper tools are required. At the same time, higher education institutions need innovative tools to increase the attractiveness of engineering curricula and develop a higher level of knowledge among students, improving their employability. This paper describes how Lean Learning Academy, an international collaboration project between five EU universities and five companies, from SME to Multinational/Global companies, developed and applied an innovative training programme for Engineers on Lean Manufacturing, a successful alternative to the traditional teaching methods in engineering courses.
Resumo:
The LMS plays an indisputable role in the majority of the eLearning environments. This eLearning system type is often used for presenting, solving and grading simple exercises. However, exercises from complex domains, such as computer programming, require heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. This work presents a standard approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach use a pivot component embedded in the LMS with two roles: provide an exercise resolution environment and coordinate the communication between the LMS and other systems exposing their functions as web services. The integration of the pivot component with the LMS relies on the Learning Tools Interoperability. The validation of this approach is made through the integration of the component with LMSs from two vendors.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
Learning Disability Service Framework - Easy Access Version