991 resultados para Few-body systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The well-known correlations of low-energy three and four-nucleon observables with a typical three-nucleon scale (e.g., the Tjon line) is extended to light nuclei and nuclear matter. Evidence for the scaling between light nuclei binding energies and the triton one are pointed out. We argue that the saturation energy and density of nuclear matter are correlated to the triton binding energy. The available systematic nuclear matter calculations indicate a possible band structure representing these correlations. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With perspective to applications of cold-atom systems, some aspects of few-body physics at very low energies will be reviewed. By exploring the possibilities of varying the two-body interaction via the Feshbach resonance mechanism, some recent results are reported for condensed systems in optical lattices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first step toward the application of an effective non partial wave (PW) numerical approach to few-body atomic bound states has been taken. The two-body transition amplitude which appears in the kernel of three-dimensional Faddeev-Yakubovsky integral equations is calculated as function of two-body Jacobi momentum vectors, i.e. as a function of the magnitude of initial and final momentum vectors and the angle between them. For numerical calculation the realistic interatomic interactions HFDHE2, HFD-B, LM2M2 and TTY are used. The angular and momentum dependence of the fully off-shell transition amplitude is studied at negative energies. It has been numerically shown that, similar to the nuclear case, the transition amplitude exhibits a characteristic angular behavior in the vicinity of He-4 dimer pole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive an alternative semiclassical approach (to the Wigner-Kirkwood method) for many-body systems using a mapping scheme based on the squeezed states phase space representation. The new expansion is applied to the usual harmonic oscillator case and the differences with the Wigner-Kirkwood results are discussed. © 1990.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the appearance of a fixed-point singularity in the kernel of the two-electron Cooper problem is responsible for the formation of the Cooper pair for an arbitrarily weak attractive interaction between two electrons. This singularity is absent in the problem of three and few superconducting electrons at zero temperature on the full Fermi sea. Consequently, such three- and few-electron systems on the full Fermi sea do not form Cooper-type bound states for an arbitrarily weak attractive pair interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the low-energy universality observed in three-body models through a scale-independent approach. From the already estimated infinite number of three-body excited energy states, which happen in the limit when the energy of the subsystem goes to zero, we are able to identify the lower energies of the helium trimers as possible examples of Thomas-Efimov states. By considering this example, we illustrate the usefulness of a scaling function, which we have defined. The approach is applied to bosonic systems of three identical particles, and also to the case where two kinds of particles are present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we solve exactly a class of three-body propagators for the most general quadratic interactions in the coordinates, for arbitrary masses and couplings. This is done both for the constant as the time-dependent couplings and masses, by using the Feynman path integral formalism. Finally, the energy spectrum and the eigenfunctions are recovered from the propagators. © 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deuteron binding energy and wave function are calculated by using the recently developed three-dimensional form of low-momentum nucleon-nucleon (NN) interaction. The homogeneous Lippmann-Schwinger equation is solved in momentum space by using the low-momentum two-body interaction, which is constructed from Malfliet-Tjon potential. The results for both, deuteron binding energy and wave function, obtained with low-momentum interaction, are compared with the corresponding results obtained with bare potential. © 2012 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report recent advances on the study of universal weakly bound four-boson states from the solutions of the Faddeev-Yakubovsky equations with zero-range two-body interactions. In particular, we present the correlation between the energies of successive tetramers between two neighbor Efimov trimers and compare it to recent finite range potential model calculations. We provide further results on the large momentum structure of the tetramer wave function, where the four-body scale, introduced in the regularization procedure of the bound state equations in momentum space, is clearly manifested. The results we are presenting confirm a previous conjecture on a four-body scaling behavior, which is independent of the three-body one. We show that the correlation between the positions of two successive resonant four-boson recombination peaks are consistent with recent data, as well as with recent calculations close to the unitary limit. Systematic deviations suggest the relevance of range corrections. © 2012 Springer-Verlag.