1000 resultados para Ferroelectric crystals.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telluric Acid Ammonium Phosphate (Te(OH)62(NH4)H2PO4(NH4)2HPO4) reffered to as TAAP is a recently discovered class m ferroelectric.1 It undergoes FE-PE transition at 48°C. Switching studies in this crystal has been carried out in the temperature range -14°C to 39°C by applying fields up to 4 kV/cm. Measurements were carried out on (101) plates cut from the crystals grown from solution. X-ray irradiation was carried out at room temperature by means of an x-ray tube operating at 25 kV and 15 mA with copper target. Air drying silver paste was used as electrodes. Samples were checked for hysteresis loop using a modified Sawyer-Tower circuit. The Ps value obtained from the loop is 2.1 μC/cm2 which is comparable to the earlier reported value. It was however noticed that the loop was slightly shifted to right with respect to the origin indicating the presence of a small internal bias which was 100 V/cm in the virgin crystal. This bias could not be removed even after repeated crystallization. On irradiation the internal biasing field increased which was indicated by a further shift of the hysteresis loop. The bias seems to saturate at about 750 V/cm for which the crystal had to be irradiated for about 3 hours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarization switching processes in TAAP and DTAAP have been studied by the Merz method. The switching process in DTAAP is slower than in TAAP. The temperature dependence of switching time indicates that the crystal might contain groups of domain nuclei with different activation energies. X-ray irradiation causes an increase in the threshold field below which switching could not occur and decrease in the mobility of domain walls. Irradiation decreases the peak value of dielectric constant, Tc and increases the value of coercive field. Domain structure studies on TAAP crystals have shown that the crystals grow as both predominantly single domain and multi domains, depending on which the internal bias increases or remains unaffected upon irradiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

KTP crystals have been grown below and above the ferroelectric transition temperature by flux method employing both spontaneous and top-seeded solution growth techniques. A slight morphological difference has been observed in these crystals when grown below and above the T-c. Ferroelectric domains are studied in these crystals by selective domain etching. It is seen that the ferroelectric domains in crystals grown spontaneously below T, show a complicated structure. A systematic investigation of the factors influencing domain structure has been carried out. Stress to some extent has been shown to affect the domain structure. Finally, a convenient way of converting the multidomain crystals into monodomain ones is described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For decades it has been a well-known fact that among the few ferroelectric compounds in the perovskite family, namely, BaTiO3, KNbO3, PbTiO3, and Na1/2Bi1/2TiO3, the dielectric and piezoelectric properties of BaTiO3 are considerably higher than the others in polycrystalline form at room temperature. Further, similar to ferroelectric alloys exhibiting morphotropic phase boundary, single crystals of BaTiO3 exhibit anomalously large piezoelectric response when poled away from the direction of spontaneous polarization at room temperature. These anomalous features in BaTiO3 remained unexplained so far from the structural standpoint. In this work, we have used high-resolution synchrotron x-ray powder diffraction, atomic resolution aberration-corrected transmission electron microscopy, in conjunction with a powder poling technique, to reveal that at 300 K (i) the equilibrium state of BaTiO3 is characterized by coexistence of metastable monoclinic Pm and orthorhombic (Amm2) phases along with the tetragonal phase, and (ii) strong electric field switches the polarization direction from the 001] direction towards the 101] direction. These results suggest that BaTiO3 at room temperature is within an instability regime, and that this instability is the fundamental factor responsible for the anomalous dielectric and piezoelectric properties of BaTiO3 as compared to the other homologous ferroelectric perovskite compounds at room temperature. Pure BaTiO3 at room temperature is therefore more akin to lead-based ferroelectric alloys close to the morphotropic phase boundary where polarization rotation and field induced ferroelectric-ferroelectric phase transformations play a fundamental role in influencing the dielectric and piezoelectric behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reversible electrochromic effect accompanying domain-inversion during the electrical poling process in LiNbO3: Ru: Fe crystals at room temperature has been observed. In electrode area, both electrochromism and domain-inversion occur alternately, and electrochromism is also reversible during back-switch poling, which is experimentally verified and whose mechanism is briefly explained using a microstructure ferroelectric model. In addition, because of the enhancing elcctrochromic effect, different from the undoped LiNbO3 crystals, the coercive riled (21.0 kV/mm or so) measured in LiNbO3: Ru: Fe is lower than its breakdown field, thus providing a possible new technique for realizing the domain-inversion by constant electric field rather than a pulsed one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochromic phenomena accompanying the ferroelectric domain inversion in congruent RuO2-doped z-cut LiNbO3 crystals at room temperature are observed in experiments. During the electric poling process, the electrochromism accompanies the ferroelectric domain inversion simultaneously in the same poled area. The electrochromism is completely reversible when the domain is inverted from the reverse direction. The influences of electric field and annealing conditions on domain inversion and electrochromism are also discussed. We propose the reasonable assumption that charge redistribution within the crystal structure caused by domain inversion is the source for electrochemically oxidation and reduction of Ru ion to produce the electrochromic effect. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial light modulators based around liquid crystal on silicon have found use in a variety of telecommunications applications, including the optimization of multimode fibers, free-space communications, and wavelength selective switching. Ferroelectric liquid crystals are attractive in these areas due to their fast switching times and high phase stability, but the necessity for the liquid crystal to spend equal time in each of its two possible states is an issue of practical concern. Using the highly parallel nature of a graphics processing unit architecture, it is possible to calculate DC balancing schemes of exceptional quality and stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The imminent inability of silicon-based memory devices to satisfy Moore's Law is approaching rapidly. Controllable nanodomains of ferroic systems are anticipated to enable future high-density nonvolatile memory and novel electronic devices. We find via piezoresponse force microscopy (PFM) studies on lead zirconate titanate (PZT) films an unexpected nanostructuring of ferroelectric-ferroelastic domains. These consist of c-nanodomains within a-nanodomains in proximity to a-nanodomains within c-domains. These structures are created and annihilated as pairs, controllably. We treat these as a new kind of vertex-antivertex pair and consider them in terms of the Srolovitz-Scott 4-state Potts model, which results in pairwise domain vertex instabilities that resemble the vortex-antivortex mechanism in ferromagnetism, as well as dislocation pairs (or disclination pairs) that are well-known in nematic liquid crystals. Finally, we show that these nanopairs can be scaled up to form arrays that are engineered at will, paving the way toward facilitating them to real technologies.