988 resultados para Feo-zno-(cao sio2) System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for new methods of manufacture of glass-ceramics with controlled porosity and permeability is interesting of the industrial and commercial point of view, and a challenge of great complexity. Porous glass-ceramics produced by sintering and crystallization of glasses can find applications, for example, as filters, materials with bactericidal properties, bio-implants, as catalytic and enzymes supports, among others. An alternative and low cost method of ceramic manufacture reaching different levels of porosity, for diverse purposes, is the conformation assisted by addition of starch, known as consolidation with starch. The objective of this project is to study the process of conformation with starch for making porous glass-ceramics from a commercial glass in the system Na2O-CaO-SiO2, whose kinetics of sintering by viscous flow and surface crystallization are known. The method of conformation with starches is innovative for glass-ceramics and its development opens the way for obtaining a new class of materials. We found a possible route for the production of porous compacts of glass particles, from the powder preparation to the removal of starch. It was observed that a glass powder obtained by dry milling in a ball mill with alumina balls for 24 h, afterwards mixed with water in an eccentric ball mill for 2 h, without the addition of a deflocculant, and subsequently mixed with starch also in an eccentric ball mill for 5 min resulted in slurries stable against sedimentation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yttria stabilized tetragonal zirconia (Y-TZP) ceramics were sintered by liquid phase sintering at low temperatures using bioglass as sintering additive. ZrO2-bioglass ceramics were prepared by mixing a ZrO2 stabilized with 3 Mol%Y2O3 and different amounts of bioglass based on 3CaO center dot P2O5-MgO-SiO2 system. Mixtures were compacted by uniaxial cold pressing and sintered in air, at 1200 and 1300 degrees C for 120 min. The influence of the bioglass content on the densification, tetragonal phase stability, bending strength, hardness and fracture toughness was investigated. The ceramics sintered at 1300 degrees C and prepared by addition of 3% of bioglass, exhibited the highest strength of 435 MPa, hardness of 1170 HV and fracture toughness of 6.3 MPa m(1/2). These results are related to the low monoclinic phase content, high relative density and the presence of the thermal residual stress generated between the ZrO2-matrix and bioglass grain boundary, contributing to the activation of the toughening mechanisms. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the main report concerning the role that magnesium may have in highway concrete aggregate, over 20,000 electron microprobe data were obtained, primarily from automated scans, or traverses, across dolomite aggregate grains and the adjacent cement paste. Representative traverses were shown in figures and averages of the data were presented in Table II. In this Appendix, detailed representative and selected analyses of carbonate aggregate only are presented. These analyses were not presented in the main report because they would be interesting to only a few specialists in dolomite· rocks. In this Appendix, individual point analyses of mineral compositions in the paste have been omitted along with dolomite compositions at grain boundaries and cracks. Clay minerals and quartz inclusions in the aggregate are also not included. In the analyses, the first three column headings from left to right show line number, x-axis, and y-axis (Line number is an artifact of the computer print-out for each new traverse. Consecutive line numbers indicate a continuous traverse with distances between each point of 1.5 to a few μ-m. X-axis and y-axis are coordinates on the electron microscope stage). The next columns present weight percent oxide content of FeO, K20, CaO, Si02, Al203, MgO, SrO, BaO, MnO, Na20, and C02 (calculated assuming the number of moles of C02 is equal to the sum of moles of oxides, chiefly CaO and MgO), TOTAL (the sum of all oxides), and total (sum of all oxides excluding COi). In many of the analyses total is omitted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multicomponent ( Al2O3, CaO, SiO2, MgO) calcium aluminate-based glasses containing Nd3+ were prepared in order to evaluate their possibilities as laser host materials. The refractive index, UV-visible-near IR absorption spectrum, IR and visible luminescence spectra, and fluorescence decay time were measured. Judd-Ofelt model was used to obtain experimental intensity parameters ( omega2, omega4 and omega6), emission cross-section, radiative lifetimes, emission branching ratios and quantum efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Core samples of postglacial sediments and sediment surface samples from Shepherd Lake on the Bruce Peninsula, Harts Lake on the Canadian Shield, and two cores from Georgian Bay (core P-l in the western deep part and core P-7 in the eastern shallow part) have been analyzed for pH, grain size distribution, water content, bulk density, loss on ignition at 4500C and 11000 C, major oxides (Si02 ,A1203,!FeO,MgO,CaO, Na20,K20,Ti02 ,MnO and P205) and trace elements (Ba,Zr,Sr,y,S, Zn,Cu,Ni,Ce and Rb). The sediment in Georgian Bay are generally fine grained (fine silt to very fine silty clay) and the grain size decreases from the Canadian Shield (core p-7) towards the Bruce Peninsula (core P-l) along the assumed direction of sediment transport. This trend coincides with a decrease in sorting coefficient and an increase in roundness. Other physical characteristics, such as water content, bulk density and loss on ignition are positively correlated with the composition of sediments and their compaction, as well as with the energy of the depositional environment. Analyses of sediment surface samples from Shepherd Lake and Harts Lake indicate the influence of bedrock and surficial deposits in the watershed on pH condition that is also influenced by the organic matter content and probably I ! I man's activities. Organic matter content increases significantly in the surface sediment in these small lakes as a result of either natural eutrophication or anthropogenic organic loading. The extremely high organic matter content in Shepherd Lake sediment indicates rapid natural eutrophication in this closed basin and high biological productivity during postglacial time, probably due to high nutrient levels and shallow depth. The chemical composition of the Canadian Shield bedrock is positively correlated with the chemical characteristics of predominantly inorganic lake sediments that were derived from the Shield rocks by glacial abrasion and by postglacial weathering and erosion of both bedrock and surficial deposits. High correlation coefficients were found between organic matter in lake sediments and major oxides (Si02,AI203,.~FeO, MgO,CaO,K20 and MnO) , as well as some trace elements (Ba,Y, S,Zn,Cu,Ni and Rb). The chemical composition of sediments in Harts Lake and core P-7 in Georgian Bay on the Canadian Shield differs from the chemistry of sediments in Shepherd Lake and core P-l in Georgian Bay on the Bruce Peninsula. The difference between cores P-l and P-7 is indicated by values of Si02 , AI203 ,:LFeo,Mgo,CaO,Ba,Zr,Sr,y and S, and also by the organic matter content. This study indicates that the processes of sediment transport, depositional environment, weathering of the rocks and surficial deposits in the watershed, as well as chemical composition of source rocks all affect the chemical characteristics of lake sediments. The stratigraphic changes and variations in lake sediment chemistry with regard to major oxides, trace elements, and organic matter content are probably related to the history of glacial and postglacial lake stages of the Georgian Bay Region and, therefore, the geochemical data can make a useful contribution to a better understanding of the Late-Quaternary history of the Great Lakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of glass additives on the densification , phase evolution, microstructure and microwave dielectric properties of Ba(Mg1;3 Ta2i3)03 (BMT) was investigated . Different weight percentages of quenched glass such as B203 , Si02, B203-SiO2, ZnO-B203, 5ZnO-2B2O3, Al203-SiO2, Na20-2B203.10H20, BaO-B203-SiO2, MgO-B203-SiO2, PbO-B203-SiO2 , ZnO-B203-SiO2 and 2MgO-Al203-5SiO2 were added to calcined BMT precursor . The sintering temperature of the glass -added BMT samples were lowered down to 1300 °C compared to solid-state sintering where the temperature was 1650 °C. The formation of high temperature satellite phases such as Ba5Ta4O15 and Ba7Ta6O22 were found to be suppressed by the glass addition . Addition of glass systems such as B203, ZnO-B203, 5ZnO-2B203 and ZnO-B203-SiO2 improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification . The microwave dielectric properties of undoped BMT with a densification of 93 . 1 % of the theoretical density were Cr = 24 . 8, Tr = 8 ppm/°C and Q„ x f= 80,000 GHz. The BMT doped with 1.0 wt% of B203 has Q„ x f = 124,700GHz, Cr = 24.2, and T f = -1.3 ppm /°C. The unloaded Q factor of 0.2 wt% ZnO-B203-doped BMT was 136,500 GHz while that of 1.0 wt% of 5ZnO-2B203 added ceramic was Q„ x f= 141,800 GHz . The best microwave quality factor was observed for ZnO -B203-SiO2 (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2wt% ZBS-added BMT dielectric was Q„ x f= 152,800 GHz, F,= 25.5, and Tr = - 1.5 ppm/°C

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perfis de alteração em basaltos com baixos teores de Ti02 (LTiB) da Parte Sudeste da Bacia do Paraná (SPB) associam-se a superfícies aplainadas, nos planaltos das Araucárias (Ab' Saber, 1973), entre altitudes de 950 m a 750 m (Vacaria) e 1000m a 920m (a Sul de Lages). Em domínios mais dissecados do relevo, que crescem de Este para Oeste, e nas encostas intensamente dissecadas destes planaltos a Sul (calha do rio Antas) e a Norte (calha do rio Pelotas), os perfis de alteração são truncados ou inexistentes. A associação dos perfis de alteração com superfícies geomorfológicamente mais antigas (aplainadas e elevadas) faz supor que o início dos processos de alteração seja correlativo às superfícies aplainadas, antigo e, provável mente, Terciário. As sequências de alteração mais completas localizam-se em morros de topo plano e apresentam as seguintes fácies: Rocha mãe, saprólito, alterito argiloso, alterito esferoidal, "stone line", coberturas móveis e solo atual. Químicamente os produtos de alteração intempérica dos basaltos são "lateritas" segundo definição de Schellmann (1981), com enriquecimento em Fe2D.3 e H20; perdas em Si02, FeO, MgO, CaO, Na20 e K20; prováveis pequenas perdas emA12D.3. No saprólito, os pedaços de rocha fragmentada permitiram a descrição das alterações hidrotermais refletidas nas para gêneses dos sítios intersticiais, constitui dos por materiais cristalinos e criptocristalinos. Os cristais de titanomagnetita aparecem com manchas azuis irregulares que sugerem variações cristaloquímicas contínuas dentro de um mesmo cristal, típicas da maghemitização. O alterito argiloso é sede de pseudomorfoses dos minerais magmáticos e hidrotermais. Esmectitas, ocupam os sítios das camadas mistas hidrotermais; halloysitas 7 e 10 Á são dominantes nos plasmas das pseudomorfoses de plagioclásios e plasmas ricos em ferro e sílica predominam nas pseudomorfoses de piroxênios. Observa-se a transição halloysita -caolinita desordenada rica em ferro estrutural nas partes superiores do conjunto. Os plasmas secundários são silico-aluminosos, nas partes baixas do conjunto, e predominantemente opacos no topo. Estes plasmas constituem-se de halloysita, litioforita (ou plasma rico em Mn), goethita e maghemita. O alterito esferoidal apresenta o núcleo de rocha e um córtex de cor amarelo -alaranjada em que se verifica a presença dominante da goethita aluminosa. Secundáriamente, aparecem cristobalita, maghemita e gibbsita. As coberturas móveis, são constitui das de plasma caolinítico e plasmas ricos em hematita e goethita. Aparecem ainda grânulos, pisólitos e nódulos herdados de antigas couraças desmanteladas. Os minerais, formados em condições lateritizantes, são os filossilicatos halloysita 7Á e lOÁ, caolinita desordenada e os óxidos e hidróxidos, hematita, goethita, gibbsita e litioforita.Observou-se que a mineralogia de alteração está intimamente associada à textura da rocha original. Encontram-se, ainda, nestes horizontes de alteração intempérica, a cristobalita (metaestável) e a titanomaghemita. As titanomaghemitas identificadas nos saprólitos e alteritos apresentam as características de maghemitização: diminuição da taxa 32(Fe+ Ti)/O, aumento de lacunas na malha cristalina e diminuição do parâmetro ~. Mg diminui com o intemperismo, Mn e AI se concentram nas fases magnéticas. A halloysita 7Á predomina sobre a lOÁ, na fração < 2Jlm, do alterito argiloso, alterito esferoidal e no sistema fissural. A caolinita predomina no horizonte "tacheté". No alterito esferoidal, ocorre também caolinita e esmectita. As argilas halloysíticas apresentam quatro morfologias: esferas, tubos, lamelas planares e cones. A halloysita forma-se preferencialmente à caolinita no córtex de alteração do alterito esferoidal e na fácies argilosa, constituindo um primeiro estágio de intemperismo. Os tubos e cones têm os menores teores de Fe2Ü3 enquanto as halloysitas planares têm os mais altos teores de Fe2Ü3. O teor de Fe das partículas esferoidais é variado. Os óxidos e hidróxidos destes perfis caracterizaram variações da atividade a água, de atividade da sílica dissolvida e temperatura, refletindo as paleocondições (climáticas) de formação destas coberturas fósseis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho teve como objetivo investigar os fenômenos que controlam a porosidade em corpos cerâmicos com fases vítreas, formadas pela ação de fundentes, e associá-los com sua microestrutura final. Foram selecionados os fundentes albita, feldspato alcalino, wollastonita e espodumênio, representativos daqueles comercializados no setor cerâmico, a partir de critérios como teor e tipo de álcali, e teor em SiO2 e Al2O3 na composição química. Estes fundentes foram formulados com cada uma das seguintes matérias-primas e combinações destas: quartzo, caulim e talco. As composições foram formuladas com o objetivo de obter-se uma gama de diferentes microestruturas, variando porosidade, e a presença de fases vítreas ou cristalinas. Os corpos cerâmicos foram obtidos em fornos elétricos, tipo mufla, variando-se a temperatura entre 1140 e 1260°C, conforme a formulação investigada. Foram determinadas as propriedades dos corpos cerâmicos, como porosidade aparente, absorção de água e retração linear. Os resultados obtidos foram associados com sua microestrutura e formulação. Para tanto, fez-se uso de microscopia eletrônica de varredura e difratometria de raios-X. Em especial, a porosidade foi avaliada quanto sua distribuição, morfologia e tamanho, e sua influência na definição da microestrutura final, e relação com propriedades dos corpos cerâmicos investigados. Os resultados obtidos indicaram que o comportamento dos fundentes em massas cerâmicas define decisivamente a formação da porosidade em função da composição química do fundente e da combinação desta com a dos outros constituintes da massa cerâmica. O espodumênio forma fase vítrea reagindo basicamente com o quartzo em baixas temperaturas, retendo a porosidade principalmente junto às trincas de contração do mesmo. A albita propicia na expansão da porosidade e interconexão da mesma. O feldspato alcalino forma um líquido de maior viscosidade mantendo a menor porosidade e de maneira mais isolada. A wollastonita reage de modo diferenciado dos demais no que diz respeito à sílica presente, reagindo melhor na presença do alumínio e do magnésio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)