857 resultados para Federal High Performance Computing Program (U.S.)
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Shipping list no.: 2000-0347-P.
Resumo:
Shipping list no.: 2001-0258-P.
Resumo:
The demands of the process of engineering design, particularly for structural integrity, have exploited computational modelling techniques and software tools for decades. Frequently, the shape of structural components or assemblies is determined to optimise the flow distribution or heat transfer characteristics, and to ensure that the structural performance in service is adequate. From the perspective of computational modelling these activities are typically separated into: • fluid flow and the associated heat transfer analysis (possibly with chemical reactions), based upon Computational Fluid Dynamics (CFD) technology • structural analysis again possibly with heat transfer, based upon finite element analysis (FEA) techniques.
Resumo:
Background: Large-scale biological jobs on high-performance computing systems require manual intervention if one or more computing cores on which they execute fail. This places not only a cost on the maintenance of the job, but also a cost on the time taken for reinstating the job and the risk of losing data and execution accomplished by the job before it failed. Approaches which can proactively detect computing core failures and take action to relocate the computing core's job onto reliable cores can make a significant step towards automating fault tolerance. Method: This paper describes an experimental investigation into the use of multi-agent approaches for fault tolerance. Two approaches are studied, the first at the job level and the second at the core level. The approaches are investigated for single core failure scenarios that can occur in the execution of parallel reduction algorithms on computer clusters. A third approach is proposed that incorporates multi-agent technology both at the job and core level. Experiments are pursued in the context of genome searching, a popular computational biology application. Result: The key conclusion is that the approaches proposed are feasible for automating fault tolerance in high-performance computing systems with minimal human intervention. In a typical experiment in which the fault tolerance is studied, centralised and decentralised checkpointing approaches on an average add 90% to the actual time for executing the job. On the other hand, in the same experiment the multi-agent approaches add only 10% to the overall execution time
Resumo:
Mode of access: Internet.
Resumo:
"Contract no. OPM-87-9027."
Resumo:
Mode of access: Internet.
Resumo:
"November 1993."
Resumo:
With the 2010 Vancouver Winter Olympic Games quickly approaching, there has been a heightened interest in the performance of Canadian athletes at international competitions (Duffy, 2007; Fidlin, 2005; Longley, 2006). Two significant documents outline Canada's goal to become the number one sporting nation at the 2010 Olympic Games, and improve Canada's performance at the 2008 Olympic Games: Own the Podium and Road to Excellence (Priestner Allinger & Allinger, 2004; Road to Excellence, 2006). These two documents represent heightened interest in the performance of our elite athletes, in conjunction with Canada's hosting status of the Vancouver 2010 Winter Olympic Games. The requirements to train and compete at the international level have become more demanding both in terms of financial resources and time commitment. The need to financially assist athletes with their training and competition costs has been an important topic of debate over the past decades (Beamish & Borowy, 1987; Gatehouse, 2004; Macintosh, 1996; Munro, 1970; Owens, 2004). Two sources of fiinding for high performance athletes in Canada are the Athlete Assistance Program (AAP) provided by the Federal Government and the Canadian Olympic Excellence Fund provided by the Canadian Olympic Committee. The importance of these fiinds for athletes has been discussed in various forums (Ekos, 1992, 1997, 2005; Priestner Allinger & Allinger, 2004; Thibault «& Babiak, 2005). However, alternative sources of funds for high performance athletes have never been the object of research. As such the purpose of this study was to describe a group of athlete applicants from the time period of November 2004 to April 2006, and to contextualize these applications within the development of the Charitable Fund for Athletes.
Resumo:
Small clusters of gallium oxide, technologically important high temperature ceramic, together with interaction of nucleic acid bases with graphene and small-diameter carbon nanotube are focus of first principles calculations in this work. A high performance parallel computing platform is also developed to perform these calculations at Michigan Tech. First principles calculations are based on density functional theory employing either local density or gradient-corrected approximation together with plane wave and gaussian basis sets. The bulk Ga2O3 is known to be a very good candidate for fabricating electronic devices that operate at high temperatures. To explore the properties of Ga2O3 at nonoscale, we have performed a systematic theoretical study on the small polyatomic gallium oxide clusters. The calculated results find that all lowest energy isomers of GamOn clusters are dominated by the Ga-O bonds over the metal-metal or the oxygen-oxygen bonds. Analysis of atomic charges suggest the clusters to be highly ionic similar to the case of bulk Ga2O3. In the study of sequential oxidation of these slusters starting from Ga2O, it is found that the most stable isomers display up to four different backbones of constituent atoms. Furthermore, the predicted configuration of the ground state of Ga2O is recently confirmed by the experimental result of Neumark's group. Guided by the results of calculations the study of gallium oxide clusters, performance related challenge of computational simulations, of producing high performance computers/platforms, has been addressed. Several engineering aspects were thoroughly studied during the design, development and implementation of the high performance parallel computing platform, rama, at Michigan Tech. In an attempt to stay true to the principles of Beowulf revolutioni, the rama cluster was extensively customized to make it easy to understand, and use - for administrators as well as end-users. Following the results of benchmark calculations and to keep up with the complexity of systems under study, rama has been expanded to a total of sixty four processors. Interest in the non-covalent intereaction of DNA with carbon nanotubes has steadily increased during past several years. This hybrid system, at the junction of the biological regime and the nanomaterials world, possesses features which make it very attractive for a wide range of applicatioins. Using the in-house computational power available, we have studied details of the interaction between nucleic acid bases with graphene sheet as well as high-curvature small-diameter carbon nanotube. The calculated trend in the binding energies strongly suggests that the polarizability of the base molecules determines the interaction strength of the nucleic acid bases with graphene. When comparing the results obtained here for physisorption on the small diameter nanotube considered with those from the study on graphene, it is observed that the interaction strength of nucleic acid bases is smaller for the tube. Thus, these results show that the effect of introducing curvature is to reduce the binding energy. The binding energies for the two extreme cases of negligible curvature (i.e. flat graphene sheet) and of very high curvature (i.e. small diameter nanotube) may be considered as upper and lower bounds. This finding represents an important step towards a better understanding of experimentally observed sequence-dependent interaction of DNA with Carbon nanotubes.
Resumo:
This paper describes JANUS, a modular massively parallel and reconfigurable FPGA-based computing system. Each JANUS module has a computational core and a host. The computational core is a 4x4 array of FPGA-based processing elements with nearest-neighbor data links. Processors are also directly connected to an I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for, but not limited to, the requirements of a class of hard scientific applications characterized by regular code structure, unconventional data manipulation instructions and not too large data-base size. We discuss the architecture of this configurable machine, and focus on its use on Monte Carlo simulations of statistical mechanics. On this class of application JANUS achieves impressive performances: in some cases one JANUS processing element outperfoms high-end PCs by a factor ≈1000. We also discuss the role of JANUS on other classes of scientific applications.
Resumo:
"HRDI-06/10-06(1M)E"--p. [4] of cover.