857 resultados para Feature taxonomy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of object-based approaches to the problem of extracting vegetation information from images requires accurate delineation of individual tree crowns. This paper presents an automated method for individual tree crown detection and delineation by applying a simplified PCNN model in spectral feature space followed by post-processing using morphological reconstruction. The algorithm was tested on high resolution multi-spectral aerial images and the results are compared with two existing image segmentation algorithms. The results demonstrate that our algorithm outperforms the other two solutions with the average accuracy of 81.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The explosive growth of the World-Wide-Web and the emergence of ecommerce are the major two factors that have led to the development of recommender systems (Resnick and Varian, 1997). The main task of recommender systems is to learn from users and recommend items (e.g. information, products or books) that match the users’ personal preferences. Recommender systems have been an active research area for more than a decade. Many different techniques and systems with distinct strengths have been developed to generate better quality recommendations. One of the main factors that affect recommenders’ recommendation quality is the amount of information resources that are available to the recommenders. The main feature of the recommender systems is their ability to make personalised recommendations for different individuals. However, for many ecommerce sites, it is difficult for them to obtain sufficient knowledge about their users. Hence, the recommendations they provided to their users are often poor and not personalised. This information insufficiency problem is commonly referred to as the cold-start problem. Most existing research on recommender systems focus on developing techniques to better utilise the available information resources to achieve better recommendation quality. However, while the amount of available data and information remains insufficient, these techniques can only provide limited improvements to the overall recommendation quality. In this thesis, a novel and intuitive approach towards improving recommendation quality and alleviating the cold-start problem is attempted. This approach is enriching the information resources. It can be easily observed that when there is sufficient information and knowledge base to support recommendation making, even the simplest recommender systems can outperform the sophisticated ones with limited information resources. Two possible strategies are suggested in this thesis to achieve the proposed information enrichment for recommenders: • The first strategy suggests that information resources can be enriched by considering other information or data facets. Specifically, a taxonomy-based recommender, Hybrid Taxonomy Recommender (HTR), is presented in this thesis. HTR exploits the relationship between users’ taxonomic preferences and item preferences from the combination of the widely available product taxonomic information and the existing user rating data, and it then utilises this taxonomic preference to item preference relation to generate high quality recommendations. • The second strategy suggests that information resources can be enriched simply by obtaining information resources from other parties. In this thesis, a distributed recommender framework, Ecommerce-oriented Distributed Recommender System (EDRS), is proposed. The proposed EDRS allows multiple recommenders from different parties (i.e. organisations or ecommerce sites) to share recommendations and information resources with each other in order to improve their recommendation quality. Based on the results obtained from the experiments conducted in this thesis, the proposed systems and techniques have achieved great improvement in both making quality recommendations and alleviating the cold-start problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the authors propose a novel video stabilisation algorithm for mobile platforms with moving objects in the scene. The quality of videos obtained from mobile platforms, such as unmanned airborne vehicles, suffers from jitter caused by several factors. In order to remove this undesired jitter, the accurate estimation of global motion is essential. However it is difficult to estimate global motions accurately from mobile platforms due to increased estimation errors and noises. Additionally, large moving objects in the video scenes contribute to the estimation errors. Currently, only very few motion estimation algorithms have been developed for video scenes collected from mobile platforms, and this paper shows that these algorithms fail when there are large moving objects in the scene. In this study, a theoretical proof is provided which demonstrates that the use of delta optical flow can improve the robustness of video stabilisation in the presence of large moving objects in the scene. The authors also propose to use sorted arrays of local motions and the selection of feature points to separate outliers from inliers. The proposed algorithm is tested over six video sequences, collected from one fixed platform, four mobile platforms and one synthetic video, of which three contain large moving objects. Experiments show our proposed algorithm performs well to all these video sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The social tags in web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opiine wasps (Hymenoptera: Braconidae: Opiinae) are parasitoids of dacine fruit flies (Diptera: Tephritidae: Dacinae), the primary horticultural pests of Australia and the South Pacific. Effective use of opiines for biological control of fruit flies is limited by poor taxonomy and identification difficulties. To overcome these problems, this thesis had two aims: (i) to carry out traditional taxonomic research on the fruit fly infesting opine braconids of Australia and the South Pacific; and (ii) to transfer the results of the taxonomic research into user friendly diagnostic tools. Curated wasp material was borrowed from all major Australian museum collections holding specimens. This was supplemented by a large body of material gathered as part of a major fruit fly project in Papua New Guinea: nearly 4000 specimens were examined and identified. Each wasp species was illustrated using traditional scientific drawings, full colour photomicroscopy and scanning electron microscopy. An electronic identification key was developed using Lucid software and diagnostic images were loaded on the web-based Pest and Diseases Image Library (PaDIL). A taxonomic synopsis and distribution and host records for each of the 15 species of dacine-parasitising opiine braconids found in the South Pacific is presented. Biosteres illusorius Fischer (1971) was formally transferred to the genus Fopius and a new species, Fopius ferrari Carmichael and Wharton (2005), was described. Other species dealt with were Diachasmimorpha hageni (Fullaway, 1952), D. kraussii (Fullaway, 1951), D. longicaudata (Ashmead, 1905), D. tryoni (Cameron, 1911), Fopius arisanus (Sonan, 1932), F. deeralensis (Fullaway, 1950), F. schlingeri Wharton (1999), Opius froggatti Fullaway (195), Psyttalia fijiensis (Fullaway, 1936), P. muesebecki (Fischer, 1963), P. novaguineensis (Szépliget, 1900i) and Utetes perkinsi (Fullaway, 1950). This taxonomic component of the thesis has been formally published in the scientific literature. An interactive diagnostics package (“OpiineID”) was developed, the centre of which is a Lucid based multi-access key. Because the diagnostics package is computer based, without the space limitations of the journal publication, there is no pictorial limit in OpiineID and so it is comprehensively illustrated with SEM photographs, full colour photographs, line drawings and fully rendered illustrations. The identification key is only one small component of OpiineID and the key is supported by fact sheets with morphological descriptions, host associations, geographical information and images. Each species contained within the OpiineID package has also been uploaded onto the PaDIL website (www.padil.gov.au). Because the identification of fruit fly parasitoids is largely of concern to fruit fly workers, rather than braconid specialists, this thesis deals directly with an area of growing importance to many areas of pure and applied biology; the nexus between taxonomy and diagnostics. The Discussion chapter focuses on this area, particularly the opportunities offered by new communication and information tools as new ways delivering the outputs of taxonomic science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many data mining techniques have been proposed for mining useful patterns in databases. However, how to effectively utilize discovered patterns is still an open research issue, especially in the domain of text mining. Most existing methods adopt term-based approaches. However, they all suffer from the problems of polysemy and synonymy. This paper presents an innovative technique, pattern taxonomy mining, to improve the effectiveness of using discovered patterns for finding useful information. Substantial experiments on RCV1 demonstrate that the proposed solution achieves encouraging performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustically, vehicles are extremely noisy environments and as a consequence audio-only in-car voice recognition systems perform very poorly. Seeing that the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem. However, implementing such an approach requires a system being able to accurately locate and track the driver’s face and facial features in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using this system, we present our results which show that using the Viola-Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study assesses the recently proposed data-driven background dataset refinement technique for speaker verification using alternate SVM feature sets to the GMM supervector features for which it was originally designed. The performance improvements brought about in each trialled SVM configuration demonstrate the versatility of background dataset refinement. This work also extends on the originally proposed technique to exploit support vector coefficients as an impostor suitability metric in the data-driven selection process. Using support vector coefficients improved the performance of the refined datasets in the evaluation of unseen data. Further, attempts are made to exploit the differences in impostor example suitability measures from varying features spaces to provide added robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The programming and retasking of sensor nodes could benefit greatly from the use of a virtual machine (VM) since byte code is compact, can be loaded on demand, and interpreted on a heterogeneous set of devices. The challenge is to ensure good programming tools and a small footprint for the virtual machine to meet the memory constraints of typical WSN platforms. To this end we propose Darjeeling, a virtual machine modelled after the Java VM and capable of executing a substantial subset of the Java language, but designed specifically to run on 8- and 16-bit microcontrollers with 2 - 10 KB of RAM. The Darjeeling VM uses a 16- rather than a 32-bit architecture, which is more efficient on the targeted platforms. Darjeeling features a novel memory organisation with strict separation of reference from non-reference types which eliminates the need for run-time type inspection in the underlying compacting garbage collector. Darjeeling uses a linked stack model that provides light-weight threads, and supports synchronisation. The VM has been implemented on three different platforms and was evaluated with micro benchmarks and a real-world application. The latter includes a pure Java implementation of the collection tree routing protocol conveniently programmed as a set of cooperating threads, and a reimplementation of an existing environmental monitoring application. The results show that Darjeeling is a viable solution for deploying large-scale heterogeneous sensor networks. Copyright 2009 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wide-angle images exhibit significant distortion for which existing scale-space detectors such as the scale-invariant feature transform (SIFT) are inappropriate. The required scale-space images for feature detection are correctly obtained through the convolution of the image, mapped to the sphere, with the spherical Gaussian. A new visual key-point detector, based on this principle, is developed and several computational approaches to the convolution are investigated in both the spatial and frequency domain. In particular, a close approximation is developed that has comparable computation time to conventional SIFT but with improved matching performance. Results are presented for monocular wide-angle outdoor image sequences obtained using fisheye and equiangular catadioptric cameras. We evaluate the overall matching performance (recall versus 1-precision) of these methods compared to conventional SIFT. We also demonstrate the use of the technique for variable frame-rate visual odometry and its application to place recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Some dialysis patients fail to comply with their fluid restriction causing problems due to volume overload. These patients sometimes blame excessive thirst. There has been little work in this area and no work documenting polydipsia among peritoneal dialysis (PD) patients. Methods We measured motivation to drink and fluid consumption in 46 haemodialysis patients (HD), 39 PD patients and 42 healthy controls (HC) using a modified palmtop computer to collect visual analogue scores at hourly intervals. Results Mean thirst scores were markedly depressed on the dialysis day (day 1) for HD (P<0.0001). The profile for day 2 was similar to that of HC. PD generated consistently higher scores than HD day 1 and HC (P = 0.01 vs. HC and P<0.0001 vs HD day 1). Reported mean daily water consumption was similar for HD and PD with both significantly less than HC (P<0.001 for both). However, measured fluid losses were similar for PD and HC whilst HD were lower (P<0.001 for both) suggesting that the PD group may have underestimated their fluid intake. Conclusion Our results indicate that HD causes a protracted period of reduced thirst but that the population's thirst perception is similar to HC on the interdialytic day despite a reduced fluid intake. In contrast, the PD group recorded high thirst scores throughout the day and were apparently less compliant with their fluid restriction. This is potentially important because the volume status of PD patients influences their survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.

Relevância:

20.00% 20.00%

Publicador: