912 resultados para Fault detection schemes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This brief examines the application of nonlinear statistical process control to the detection and diagnosis of faults in automotive engines. In this statistical framework, the computed score variables may have a complicated nonparametric distri- bution function, which hampers statistical inference, notably for fault detection and diagnosis. This brief shows that introducing the statistical local approach into nonlinear statistical process control produces statistics that follow a normal distribution, thereby enabling a simple statistical inference for fault detection. Further, for fault diagnosis, this brief introduces a compensation scheme that approximates the fault condition signature. Experimental results from a Volkswagen 1.9-L turbo-charged diesel engine are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the application of multivariate regression techniques to the Tennessee Eastman benchmark process for modelling and fault detection. Two methods are applied : linear partial least squares, and a nonlinear variant of this procedure using a radial basis function inner relation. The performance of the RBF networks is enhanced through the use of a recently developed training algorithm which uses quasi-Newton optimization to ensure an efficient and parsimonious network; details of this algorithm can be found in this paper. The PLS and PLS/RBF methods are then used to create on-line inferential models of delayed process measurements. As these measurements relate to the final product composition, these models suggest that on-line statistical quality control analysis should be possible for this plant. The generation of `soft sensors' for these measurements has the further effect of introducing a redundant element into the system, redundancy which can then be used to generate a fault detection and isolation scheme for these sensors. This is achieved by arranging the sensors and models in a manner comparable to the dedicated estimator scheme of Clarke et al. 1975, IEEE Trans. Pero. Elect. Sys., AES-14R, 465-473. The effectiveness of this scheme is demonstrated on a series of simulated sensor and process faults, with full detection and isolation shown to be possible for sensor malfunctions, and detection feasible in the case of process faults. Suggestions for enhancing the diagnostic capacity in the latter case are covered towards the end of the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the techniques used to detect faults in dynamic systems is analytical redundancy. An important difficulty in applying this technique to real systems is dealing with the uncertainties associated with the system itself and with the measurements. In this paper, this uncertainty is taken into account by the use of intervals for the parameters of the model and for the measurements. The method that is proposed in this paper checks the consistency between the system's behavior, obtained from the measurements, and the model's behavior; if they are inconsistent, then there is a fault. The problem of detecting faults is stated as a quantified real constraint satisfaction problem, which can be solved using the modal interval analysis (MIA). MIA is used because it provides powerful tools to extend the calculations over real functions to intervals. To improve the results of the detection of the faults, the simultaneous use of several sliding time windows is proposed. The result of implementing this method is semiqualitative tracking (SQualTrack), a fault-detection tool that is robust in the sense that it does not generate false alarms, i.e., if there are false alarms, they indicate either that the interval model does not represent the system adequately or that the interval measurements do not represent the true values of the variables adequately. SQualTrack is currently being used to detect faults in real processes. Some of these applications using real data have been developed within the European project advanced decision support system for chemical/petrochemical manufacturing processes and are also described in this paper

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El desalineamiento temporal es la incorrespondencia de dos señales debido a una distorsión en el eje temporal. La Detección y Diagnóstico de Fallas (Fault Detection and Diagnosis-FDD) permite la detección, el diagnóstico y la corrección de fallos en un proceso. La metodología usada en FDD está dividida en dos categorías: técnicas basadas en modelos y no basadas en modelos. Esta tesis doctoral trata sobre el estudio del efecto del desalineamiento temporal en FDD. Nuestra atención se enfoca en el análisis y el diseño de sistemas FDD en caso de problemas de comunicación de datos, como retardos y pérdidas. Se proponen dos técnicas para reducir estos problemas: una basada en programación dinámica y la otra en optimización. Los métodos propuestos han sido validados sobre diferentes sistemas dinámicos: control de posición de un motor de corriente continua, una planta de laboratorio y un problema de sistemas eléctricos conocido como hueco de tensión.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method to enhance fault localization for software systems based on a frequent pattern mining algorithm. Our method is based on a large set of test cases for a given set of programs in which faults can be detected. The test executions are recorded as function call trees. Based on test oracles the tests can be classified into successful and failing tests. A frequent pattern mining algorithm is used to identify frequent subtrees in successful and failing test executions. This information is used to rank functions according to their likelihood of containing a fault. The ranking suggests an order in which to examine the functions during fault analysis. We validate our approach experimentally using a subset of Siemens benchmark programs.